•  
  •  
 
Experimental and Computational Multiphase Flow

Article Title

Modeling of solid-particle effects on bubble breakage and coalescence in slurry bubble columns

Keywords

breakup and coalescence, CFD simulation, population balance equation, slurry bubble column, solid-particle effect

Abstract

Solid particles heavily affect the hydrodynamics in slurry bubble columns. The effects arise through varying breakup and coalescence behavior of the bubbles with the presence of solid particles where particles in the micrometer range lead to a promotion of coalescence in particular. To simulate the gas-liquid-solid flow in a slurry bubble column, the Eulerian multifluid approach can be employed to couple computational fluid dynamics (CFD) with the population balance equation (PBE) and thus to account for breakup and coalescence of bubbles.In this work, three approaches are presented to modify the breakup and coalescence models to account for enhanced coalescence in the coupled CFD-PBE framework. The approaches are applied to a reference simulation case with available experimental data. In addition, the impacts of the modifications on the simulated bubble size distribution (BSD) and the applicability of the approaches are evaluated. The capabilities as well as the differences and limits of the approaches are demonstrated and explained.

Publisher

Tsinghua University Press

Share

COinS