
Article Title
Keywords
Monte Carlo, ray tracing, path guiding, volume light transport, participating media, rendering
Abstract
Rendering translucent materials is costly: light transport algorithms need to simulate a large number of scattering events inside the material before reaching convergence. The cost is especially high for materials with a large albedo or a small mean-free-path, where higher-order scattering effects dominate. In simple terms, the paths get lost in the medium. Path guiding has been proposed for surface rendering to make convergence faster by guiding the sampling process. In this paper, we introduce a path guiding solution for translucent materials. We learn an adaptive approximate representation of the radiance distribution in the volume and use it to sample the scattering direction, combining it with phase function sampling by resampled importance sampling. The proposed method significantly improves the performance of light transport simulation in participating media, especially for small lights and media with refractive boundaries. Our method can handle any homogeneous participating medium, with high or low scattering, with high or low absorption, and from isotropic to highly anisotropic.
Publisher
Tsinghua University Press
Recommended Citation
Hong Deng, Beibei Wang, Rui Wang et al. A practical path guiding method for participating media. Computational Visual Media 2020, 6(1): 37-51.
Included in
Computational Engineering Commons, Computer-Aided Engineering and Design Commons, Graphics and Human Computer Interfaces Commons, Software Engineering Commons