•  
  •  
 
Computational Visual Media

Keywords

single image super-resolution (SISR), adaptive deep residual network, deep learning

Abstract

In recent years, deep learning has achieved great success in the field of image processing. In the single image super-resolution (SISR) task, the con-volutional neural network (CNN) extracts the features of the image through deeper layers, and has achieved impressive results. In this paper, we propose a singleimage super-resolution model based on Adaptive Deep Residual named as ADR-SR, which uses the Input Output Same Size (IOSS) structure, and releases the dependence of upsampling layers compared with the existing SR methods. Specifically, the key element of our model is the Adaptive Residual Block (ARB), which replaces the commonly used constant factor with an adaptive residual factor. The experiments prove the effectiveness of our ADR-SR model, which can not only reconstruct images with better visual effects, but also get better objective performances.

Publisher

Tsinghua University Press

Share

COinS