
Keywords
semantic segmentation, receptive field, data-driven, face parsing
Abstract
In this paper, we introduce a novel approach to automatically regulate receptive fields in deep image parsing networks. Unlike previous work which placed much importance on obtaining better receptive fields using manually selected dilated convolutional kernels, our approach uses two affine transformation layers in the network’s backbone and operates on feature maps. Feature maps are inflated or shrunk by the new layer, thereby changing the receptive fields in the following layers. By use of end-to-end training, the whole framework is data-driven, without laborious manual intervention. The proposed method is generic across datasets and different tasks. We have conducted extensive experiments on both general image parsing tasks, and face parsing tasks as concrete examples, to demonstrate the method’s superior ability to regulate over manual designs.
Publisher
Tsinghua University Press
Recommended Citation
Zhen Wei, Yao Sun, Junyu Lin et al. Learning adaptive receptive fields for deep image parsing networks. Computational Visual Media 2018, 04(03): 231-244.
Included in
Computational Engineering Commons, Computer-Aided Engineering and Design Commons, Graphics and Human Computer Interfaces Commons, Software Engineering Commons