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Fig. 4  Typical SEM photographs of polished and thermally etched surfaces for Li3Mg2Sb1–xO6 ceramics under different firing 
temperatures: (a) Li3Mg2Sb0.9O6, 1200 ℃, (b) Li3Mg2Sb0.9O6, 1225 ℃, (c) Li3Mg2Sb0.9O6, 1250 ℃, (d) Li3Mg2Sb0.9O6, 1275 ℃, 
(e) Li3Mg2Sb0.95O6, 1250 ℃, and (f) Li3Mg2Sb0.875O6, 1250 ℃. 
 
Table 2  Energy disperse spectroscopy (EDS) data of 
the grains A–C marked in Fig. 4(c) 

Weight (wt%) Atom (wt%) 
Grain 

MgK SbL OK MgK SbL OK 

A 22.07 50.55 27.37 29.93 13.69 56.39

B 23.00 47.40 29.61 29.69 12.22 58.09

C 25.86 37.30 36.84 28.96 08.34 62.69
 

the concentrations of compositional elements, which were 
conducted on grains A–C marked in Fig. 4(c) by the 
EDS analysis. The EDS analysis revealed that the con-
stitution of large grains (marked A and B) is Li3Mg2SbO6, 
whereas the smaller and brighter grains are enriched in 
Mg (marked C). This is consistent with XRD results. 

Figure 5 shows the bulk density of Li3Mg2Sb1–xO6 

ceramics after heat treatment at 1200–1275 ℃. For 
Li3Mg2Sb0.95O6 sample, the bulk density gradually 
increased with increasing temperature from 1200 to 
1275 ℃, indicating it has high densification sintering 
temperature. However, for Li3Mg2Sb0.9O6 sample, the 
bulk density increased gradually to the maximum at 
1250 ℃ and subsequently descended. The enhancement 
in bulk density of Li3Mg2Sb0.9O6 sample could 
attribute to the reduction in porosity and grain 
boundaries, whereas its decrement could attribute to 
the anomalous grain growth, as displayed in Fig. 4. In 
addition, compared with Li3Mg2SbO6 ceramics [10], 
the low sintering temperature of Li3Mg2Sb0.9O6 ceramics  

 
 

Fig. 5  Bulk density of Li3Mg2Sb1–xO6 ceramics following 
sintered at 1200–1275 ℃. 
 

could attribute to the Sb deficiency and oxygen vacancies 
within the crystals [26].  

Figure 6 displays the variations in εr, τf, and Qf of 
Li3Mg2Sb1–xO6 compounds with firing temperature. In 
general, εr is dramatically dependent on density, ionic 
polarizability, secondary phase, etc. [27]. The relationship 
between εr and sintering temperature or composition of 
Li3Mg2Sb1–xO6 ceramics revealed a similar tendency as 
between density and sintering temperature or composition, 
as shown in Fig. 6(a). Thus, the εr value is mainly 
influenced by densification rather than ionic polariza-
bility and secondary phase. In addition, the τf values of 
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Li3Mg2Sb0.9O6 ceramics remained stable (about –8.0 
ppm/℃) regardless of sintering temperatures as seen in 
Fig. 6(b). Both intrinsic parameters (vibration modes 
and packing fraction) and extrinsic parameters (density, 
mean grain size, phase composition, etc.) can influence 
the Qf value of ceramics [28,29]. In the present 
ceramics, the intrinsic factors should be ignored 
because of no significant change of vibration mode (Fig. 3) 
and packing fraction as mentioned before. As 
illustrated in Fig. 6(c), when firing temperature varied 
from 1200 to 1250 ℃, the Qf value of specimens 
gradually enhanced and obtained a maximum value of 
~62,800 GHz for Li3Mg2Sb0.95O6 at 1250 ℃, and 
~86,300 GHz for Li3Mg2Sb0.9O6 at 1250 ℃ , 
respectively. The increased densification and average 
grain size could be responsible for the improvement of 
Qf value [30]. Beyond this temperature, their Qf 
values decreased slightly, which may be connected 
with the anomalous grain growth [25]. Interestingly, the 
Li3Mg2Sb0.875O6 ceramics sintered below 1250 ℃ 
showed poor resonance, which was due to the effect of 
the yellow core caused by the valence change of 
antimony ions (Fig. 7) [31]. The resemble phenomena  

 

 
 

Fig. 6  Variations in microwave dielectric properties of 
Li3Mg2Sb1–xO6 ceramics under different firing temperatures. 
 

 
Fig. 7  Sb 3d region of XPS spectra of 1225 ℃-sintered 
Li3Mg2Sb0.875O6. The inset illustrates the evidence of 
coring in Li3Mg2Sb0.875O6 samples fired at different 
conditions: (a) 1225 and (b) 1250 ℃. 

have also been observed in Ti-containing oxides ceramics 
[32,33]. However, the Li3Mg2Sb0.875O6 sample sintered 
at 1250 ℃ exhibited Qf ≈ 37,400 GHz due to the 
absence of yellow cores. A more detailed explanation 
about this phenomenon is expected in further research. 
At a given sintering temperature of 1250 ℃ , the 
Li3Mg2Sb0.9O6 sample exhibited superior Qf value 
than the others, indicating moderate Sb-deficiency is 
benefited to improve the Qf value of 
Li3Mg2SbO6-based ceramics. The true reason is still 
unknown and further research is in progress. Compared 
to our previous study [10], the non-stoichiometric 
Li3Mg2Sb0.9O6 ceramics fabricated by classical 
solid-state method owned comparable dielectric 
performances with Li3Mg2SbO6 ceramics prepared via 
modified two-stage process, but relatively lower 
sintering temperature and simple synthesis process. 
The comparable or even slightly enhanced Qf value 
would be related to the distortion of crystal lattice 
caused by an appropriate Sb-site nonstoichiometry, a 
similar phenomenon was also reported in other ceramic 
systems [34–36]. Moreover, the Qf value  (86,300 
GHz, at 10.4 GHz) of Li3Mg2Sb0.9O6 ceramics is 1.7 
times larger than that of nominal composition 
Li3Mg2SbO6 ceramics (Qf = 49,000 GHz at 11.0 GHz), 
which is ascribed to the absence of secondary SbOx [9].  

4  Conclusions  

The non-stoichiometric Li3Mg2Sb1–xO6 (0.05 ≤ x ≤ 
0.125) ceramics were fabricated, and their phase com-
position, sintering character, and dielectric properties 
were characterized. XRD and Raman spectrum results 
confirmed that Li3Mg2SbO6 without obvious secondary 
phase can be maintained within the compositional 
range of 0.05 ≤ x ≤ 0.125. The sinterability and 
Qf values were tremendously improved by intro-
ducing appropriate Sb-deficiency in Li3Mg2SbO6. 
Especially, the nonstoichiometric Li3Mg2Sb0.9O6 ceramics 
sintered at 1250 ℃ simultaneously exhibited small τf of 
–8.0 ppm/℃ and εr of 10.8, a high Qf of 86,300 GHz 
(at 10.4 GHz). The favorable combined microwave 
dielectric performances make it an alternative material 
for millimeter-wave devices. 
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