2021

Fractional-Order Proportional-Integral-Derivative Linear Active Disturbance Rejection Control Design and Parameter Optimization for Hypersonic Vehicles with Actuator Faults

Ke Gao
the School of Astronautics, Beihang University, Beijing 100191, China.

Jia Song
the School of Astronautics, Beihang University, Beijing 100191, China.

Xu Wang
the School of Aerospace, Mechanical and Manufacturing Engineering, Royal Melbourne Institute of Technology University, Melbourne, Vic3083, Australia.

Huifeng Li
the School of Astronautics, Beihang University, Beijing 100191, China.

Follow this and additional works at: https://tsinghuauniversitypress.researchcommons.org/tsinghua-science-and-technology

Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. It has been accepted for inclusion in Tsinghua Science and Technology by an authorized editor of Tsinghua University Press: Journals Publishing.
Fractional-Order Proportional-Integral-Derivative Linear Active Disturbance Rejection Control Design and Parameter Optimization for Hypersonic Vehicles with Actuator Faults

Ke Gao, Jia Song*, Xu Wang, and Huifeng Li

Abstract: The hypersonic vehicle model is characterized by strong coupling, nonlinearity, and acute changes of aerodynamic parameters, which are challenging for control system design. This study investigates a novel compound control scheme that combines the advantages of the Fractional-Order Proportional-Integral-Derivative (FOPID) controller and Linear Active Disturbance Rejection Control (LADRC) for reentry flight control of hypersonic vehicles with actuator faults. First, given that the controller has adjustable parameters, the frequency-domain analysis-method-based parameter tuning strategy is utilized for the FOPID controller and LADRC method (FOLADRC). Then, the influences of the actuator model on the anti-disturbance capability and parameter tuning of the FOLADRC-based closed-loop control system are analyzed. Finally, the simulation results indicate that the proposed FOLADRC approach has satisfactory performance in terms of rapidity, accuracy, and robustness under the normal operating condition and actuator fault condition.

Key words: Active Disturbance Rejection Control (ADRC); Fractional-Order Proportional-Integral-Derivative (FOPID); Linear Extended State Observer (LESO); Near Space Hypersonic Vehicle (NSHV); actuator faults

1 Introduction

Near-Space Hypersonic Vehicles (NSHVs) have potential value in both military and civil applications and have attracted considerable attention in recent years[1]. Compared with conventional aerial vehicles, hypersonic vehicles are characterized by large envelopes, high speed, low launch cost, dynamic properties, and reusability[2]. Nonlinearity, strong coupling, and aerodynamic uncertainty may lead to large uncertain disturbances in the system. Thus, these features pose certain challenges for control system design[3].

Many control methods, such as sliding mode control, adaptive control, robust control, and other hybrid methods, have been investigated for flight control of hypersonic vehicles in the past decades. Duan and Li[4] reviewed the methodologies and summarized the challenges and limitations. The actuator plays an important role in the control system of the aircraft. Actuator faults have become an important practical problem in flight control. For attitude control, the fault-tolerant control method is a promising technique to ensure safety and reliability in the event of actuator faults[5]. A fault-tolerant control design technique against actuator stuck faults was investigated using integral-type sliding mode control with application...
to the spacecraft attitude maneuvering control system by Hu et al.\cite{6} Lai et al.\cite{7} proposed a new tuning-function-based control scheme for an infinite number of actuator faults. Gao and Cai\cite{8} used the radial basis function neural network and the finite-time adaptive fault-tolerant control technique to deal with the wing flutter problem considering actuator faults. Yu et al.\cite{9} proposed a fault-tolerant control scheme for a hypersonic gliding vehicle to counteract actuator faults and model uncertainties. A robust adaptive fault-tolerant control approach to attitude tracking of flexible spacecraft was proposed for use in situations of reaction actuator failures by Jiang et al.\cite{10}. A flexible spacecraft attitude control scheme that guarantees vibration suppression and prescribed performance on transient-state behavior was proposed considering actuator saturation faults\cite{11}. Zhong\cite{12} proposed a reliable active fault-tolerant tracking control system for actuator faults in a quadrotor unmanned aerial vehicle.

The Active Disturbance Rejection Control (ADRC) method was proposed by Han\cite{13} to solve the weaknesses of traditional Proportional-Integral-Derivative (PID) control. The ADRC is a robust method and has been widely used in many applications. Gao\cite{14} linearized the nonlinear extended state observer and proposed the Linear Extended State Observer (LESO) and Linear Active Disturbance Rejection Control (LADRC). The LADRC has a simple structure and well-developed analytical theories and has obtained satisfactory control in some fields. The Fractional-Order Proportional-Integral-Derivative (FOPID) controller, which has two additional degrees of integral order λ and proportion order μ compared with the classical PID controller, was proposed by Podlubny et al.\cite{15}. The FOPID controller and ADRC are both extensions of the classical PID controller. The FOPID can make a control system more accurate and flexible with the additional parameters, except for three essential parameters. The ADRC achieves dynamic feedback compensation for a large uncertainty covering the unknown dynamics, external disturbance, and unknown coefficients of the Extended State Observer (ESO)\cite{16}. The Fractional-Order Active Disturbance Rejection Control (FOADRC) combines the advantages of ADRC and FOPID, which ensures that it has good control quality and high robustness and is suitable for reentry flight control of hypersonic vehicles with actuator faults. A compound control scheme that combines the advantages of the FOPID controller and nonlinear ADRC method was first applied by Qin et al.\cite{17} to achieve hypersonic vehicle flight control. Their simulation results indicated the satisfactory performance of the controller in terms of rapidity, accuracy, and robustness. Song et al.\cite{18, 19} investigated the parameter optimization strategy of the nonlinear FOADRC method for hypersonic vehicles. To achieve efficient tracking, a comprehensive flight path regulation scheme based on ADRC was proposed for hypersonic vehicles\cite{20}. Tian et al.\cite{21} designed a robust output feedback autopilot for an air-breathing hypersonic vehicle based on the ADRC.

However, compared with the ADRC and FOPID methods, the FOADRC method has more tuning parameters, which increases the difficulty of parameter tuning. The parameter tuning methods for the ADRC are mainly the empirical approach and frequency-domain analysis method. Meanwhile, the parameter tuning methods for the FOPID controller are the frequency-domain analysis method, neural network algorithm, genetic algorithm, and particle swarm algorithm. In fact, some nature-inspired algorithms have already been used to solve the parameter tuning problem of the nonlinear FOADRC method. Song et al.\cite{18} optimized the control parameters using the Nondominated Sorting Particle Swarm Optimization (NSPSO) algorithm. However, the NSPSO algorithm applied to parameter setting is only for parameters λ and μ, whereas the other parameters are still set based on experience. A compound scheme that combines the advantages of differential evolution and biogeography-based optimization was applied to optimize the control parameters, except for parameters λ and μ\cite{19}. The frequency-domain analysis method as a classical method of control system design has been well investigated compared with the nature-inspired algorithms and is widely used for engineering applications. However, no research on the frequency-domain analysis-method-based parameter tuning strategy for the FOADRC method has been conducted until now.

In this study, a compound control scheme that combines the advantages of the FOPID controller and LADRC method (FOLADRC) is investigated for hypersonic vehicle flight control considering actuator faults. Then, the parameters of the hypersonic vehicle reentry attitude control system are optimized by the frequency-domain analysis method. Furthermore, the influences of the actuator model on the anti-disturbance capability and parameter tuning of the FOLADRC-
based closed-loop control system are analyzed. The performance of the FOLADRC, FOPID controller, and LADRC method is investigated through simulations.

The remainder of the paper is organized as follows. In Section 2, the six Degrees Of Freedom (6-DOF) model of hypersonic vehicles is presented. In Section 3, the FOLADRC method is proposed and the control parameters of the Tracking Differentiator (TD), LESO, and FOPID controller are tuned by the frequency-domain analysis method. The stability and influences of the actuator model are analyzed. In Section 4, the FOLADRC method is compared with the FOPID and ADRC methods to verify its high effectiveness and superior control performance under the normal operating condition and the actuator fault condition. Finally, Section 5 draws the conclusions.

2 Hypersonic Vehicle Model with Actuator Faults

This study on NSHV control focuses on the winged-cone model proposed by Shaughnessy et al.[22] Figure 1 shows the schematic drawing of the NSHV. Table 1 shows the parameters of the NSHV.

The notations used in the NSHV model, which were derived from the study of Song et al.[18], are shown in Fig. 2.

In Fig. 2, the inertia coordinate system \(\alpha x_0 y_0 z_0\), speed coordinate system \(\alpha x_h y_h z_h\), and body coordinate system \(\alpha x_h y_h z_h\) are depicted. \(F\) and \(P\) denote the aerodynamic force and propulsion, respectively. The angle of attack \(\alpha\) is the angle between \(x_0\) and the plane of \(x_h o y_h\). The sideslip angle \(\beta\) is the angle between \(x_h\) and the plane of \(x_h o y_h\). \(V\) represents the velocity.

Define the roll angle \(\gamma\) as the angle between \(y_h\) and the plane of \(x_0 o y_0\). The reentry process of the NSHV can be described by the following 13 nonlinear differential equations.

\[
\begin{align*}
\dot{x} &= V \cos \theta \cos \psi \\
\dot{y} &= V \sin \theta \\
\dot{z} &= -V \cos \theta \sin \psi \\
\dot{\theta} &= \frac{L \cos \gamma - C \sin \gamma}{mV \cos \psi} + \frac{g}{rV \cos \psi} (-x \cos \psi \sin \theta + (y + R) \cos \theta + z \sin \psi \cos \theta) \\
\dot{\psi} &= -\frac{L \sin \gamma + C \cos \gamma}{mV} - \frac{g}{rV} (x \sin \psi + z \cos \psi) \\
\dot{\omega}_x &= \frac{(I_y - I_z)}{I_x} \omega_y \omega_z + \frac{1}{I_x} I_l \\
\dot{\omega}_y &= \frac{(I_z - I_x)}{I_y} \omega_x \omega_z + \frac{1}{I_y} m \\
\dot{\omega}_z &= \frac{(I_x - I_y)}{I_z} \omega_x \omega_z + \frac{1}{I_z} n
\end{align*}
\]
\[
\dot{\alpha} = \omega_z - \omega_x \cos \alpha \tan \beta + \omega_y \sin \alpha \tan \beta - \frac{1}{mV \cos \beta} (L + mg \cos \theta \cos \gamma_c) \tag{10}
\]

\[
\dot{\beta} = \omega_x \sin \alpha + \omega_y \cos \alpha + \frac{1}{mV} (C - mg \cos \theta \sin \gamma_c) \tag{11}
\]

\[
\dot{\gamma}_e = \omega_x \cos \alpha - \omega_y \sin \alpha + \frac{1}{mV} [L(\sin \theta \sin \gamma_c + \tan \beta) + C \sin \theta \cos \gamma_c + mg \cos \theta \sin \gamma_c \tan \beta] \tag{12}
\]

\[
g = g_0 \left(\frac{R}{R + y} \right)^2 \tag{13}
\]

where \(\theta \) is the flight path angle, \(\psi \) is the flight path azimuth angle, \(\gamma_c \) is the velocity bank angle, \(g \) is the gravitational acceleration, \(g_0 \) is the gravity on the earth’s surface, \(R \) is the earth’s radius, and \(r \) is the mass center vector of the inertial coordinates. \(\omega_x, \omega_y, \) and \(\omega_z \) represent the roll, yaw, and pitch angular rates, respectively. \(I_x, I_y, \) and \(I_z \) denote the moments of inertia for the \(x, y, \) and \(z \) coordinate axes, respectively. \(D, L, \) and \(C \) are the drag, lift, and side forces, respectively. \(l, m, \) and \(n \) represent the roll, yaw, and pitch moments, respectively.

In this study, the hypersonic vehicle is used for the reentry process without power. The main attitude control relies on the aerodynamic moments provided by the actuators, including the left aileron, the right aileron, and the rudder. The aerodynamic equations and model parameters are obtained from the study of Keshmiri et al.\[23\] The atmospheric model refers to the standard atmosphere in the USA in 1976. The aerodynamic model is expressed with the lift force coefficient \(C_L \), drag force coefficient \(C_D \), side force coefficient \(C_s \), roll moment coefficient \(C_I \), yaw moment coefficient \(C_m \), and pitch moment coefficient \(C_n \).

\[
\begin{align*}
L &= C_L q S; \\
D &= C_D q S; \\
C &= C_s q S \\
l &= C_I q b S; \\
m &= C_m q b S + X_{cg} C; \\
n &= C_n q c S + X_{cg} (D \sin \alpha + L \cos \alpha)
\end{align*} \tag{14}
\]

The aerodynamic force and moment coefficients are calculated as follows:

\[
\begin{align*}
C_L &= C_{L,\alpha} + C_{L,\delta_a} + C_{L,\delta_e}; \\
C_D &= C_{D,\alpha} + C_{D,\delta_a} + C_{D,\delta_e} + C_{D,\delta_r}; \\
C_s &= C_{s,\beta} + C_{s,\delta_a} + C_{s,\delta_e} + C_{s,\delta_r}; \\
C_I &= C_{I,\beta} + C_{I,\delta_a} + C_{I,\delta_e} + C_{I,\delta_r} + C_{I,\delta_r}; \\
C_m &= C_{m,\beta} + C_{m,\delta_a} + C_{m,\delta_e} + C_{m,\delta_r}; \\
C_n &= C_{n,\alpha} + C_{n,\delta_a} + C_{n,\delta_e} + C_{n,\delta_r} + \omega_c C_{n,\delta_r} \frac{2V}{2V} \tag{17}
\end{align*}
\]

where \(C_{L,\alpha}, C_{L,\delta_a}, \) and \(C_{L,\delta_e} \) are lift increment coefficients for basic vehicle, right elevon, and left elevon, respectively; \(C_{D,\alpha}, C_{D,\delta_a}, C_{D,\delta_e}, \) and \(C_{D,\delta_r} \) are drag increment coefficients for basic vehicle, right elevon, left elevon, and rudder, respectively; \(C_{s,\beta} \) is side force with sideslip derivative for basic vehicle; \(C_{s,\delta_a}, C_{s,\delta_e}, \) and \(C_{s,\delta_r} \) are side force increment coefficients for right elevon, left elevon, and rudder, respectively; \(C_{I,\beta} \) is rolling moment with sideslip derivative for basic vehicle; \(C_{I,\delta_a}, C_{I,\delta_e}, \) and \(C_{I,\delta_r} \) are rolling moment increments for right elevon, left elevon, and rudder, respectively; \(C_{m,\beta} \) and \(C_{m,\delta_a} \) are rolling moments with roll and yaw rate dynamic derivatives, respectively; \(C_{m,\delta_e} \) is yawing moment with sideslip derivative for basic vehicle; \(C_{m,\delta_a}, C_{m,\delta_e}, \) and \(C_{m,\delta_r} \) are yawing moment increment coefficients for right elevon, left elevon, and rudder, respectively; \(C_{n,\alpha} \) and \(C_{n,\delta_a} \) are yawing moments with roll and yaw rate dynamic derivatives, respectively; \(C_{n,\delta_e} \) is pitching moment increment coefficient for basic vehicle; \(C_{n,\delta_a}, C_{n,\delta_e}, \) and \(C_{n,\delta_r} \) are pitching moment increment coefficients for right elevon, left elevon, and rudder, respectively; \(C_{n,\delta_r} \) is pitching moment pitch rate dynamic derivative.

On the basis of the data obtained from Ref. [23], the curves of the aerodynamic coefficients \(C_{L,\alpha} \) and \(C_{n,\alpha} \) with attack angle \(\alpha \) and Mach \((Ma)\) number are shown in Figs. 3 and 4, respectively.

Figure 3 shows that the aerodynamic force coefficient \(C_{L,\alpha} \) increases approximately linearly with the attack angle for various Mach numbers. Figure 4 shows that the aerodynamic moment coefficient \(C_{n,\alpha} \) decreases approximately linearly with the attack angle for low Mach numbers and nonlinearly with the attack angle for high Mach numbers. Obvious zero offsets exist in both \(C_{L,\alpha} \) and \(C_{n,\alpha} \). From Eq. (17) and Figs. 3 and
where sideslip, and bank angles can be written as follows:

\[
P = \frac{q c \Delta d}{I_z} + \Delta a, \quad \beta = \frac{q s}{I_y} \left(b \left(C_m \beta + C_m \Delta c + C_m \rho \frac{b}{2V} \right) + X_{ce} (C_\alpha \delta + C_\beta \delta) \right) + \Delta \beta, \quad \gamma = \frac{q h b}{I_x} \left(C_l \beta + C_l \delta + C_l \rho \frac{b}{2V} \right) + \Delta \gamma_c.
\]

where \(\Delta a, \Delta \beta, \text{and} \ \Delta \gamma_c \) represent the model errors and unknown disturbances.

The actuator fault model can be expressed as

\[
\delta f = \delta - E \delta + \delta, \quad \delta f = [\delta_{af} \ \delta_{ef} \ \delta_{ef}]^T \text{ represents the fault outputs; } \delta = [\delta_{a} \ \delta_{r} \ \delta_{e}]^T ; \quad E = \text{diag}(E_a, E_r, E_e) \in \mathbb{R}^{3 \times 3} \text{ denotes the failure indicator for the actuators; } \text{and } \delta \in \mathbb{R}^3 \text{ represents the actuator bias faults.}
\]

Furthermore, to depict the hypersonic vehicle dynamic more clearly, the inputs and states are defined as follows:

\[
x = \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \dot{\alpha} \\ \dot{\beta} \\ \dot{\gamma} \end{pmatrix}, \quad \begin{pmatrix} u \\ y \end{pmatrix} = \begin{pmatrix} \delta_{a} \\ \delta_{r} \end{pmatrix}, \quad \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \delta_{a} \\ \delta_{r} \\ \delta_{e} \end{pmatrix}
\]

Then, the attitude motion equation of hypersonic vehicle can be rewritten in the following state-space form:

\[
\dot{x} = Ax + Bu + f
\]

where

\[
A = \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 & 0 \\ \vdots & \ddots & \cdots & \cdots & 1 & 0 \\ -a_{1,a} & 0 & 0 & -a_{0,a} & 0 & 0 \\ 0 & -a_{1,b} & 0 & 0 & -a_{0,b} & 0 \\ 0 & 0 & -a_{1,y_c} & 0 & 0 & -a_{0,y_c} \end{pmatrix}, \quad B = \begin{pmatrix} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} f_{a} \\ f_{\beta} \\ f_{\gamma_c} \end{pmatrix} \end{pmatrix}, \quad f = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
\]

Ke Gao et al.: Fractional-Order Proportional-Integral-Derivative Linear Active Disturbance Rejection Control...
LADRC controller design. Notably, each dimensional hypersonic vehicle model can be considered a second-order system, which is the basis of LADRC controller design.

3 FOLADRC Method for Hypersonic Vehicles with the Actuator Model

In this section, the FOLADRC method is designed for reentry flight altitude control and the control parameters of the FOADRC method are tuned by the frequency domain analysis method. The influences of the actuator model on the anti-disturbance capability and parameter tuning of the FOLADRC-based closed-loop control system are analyzed.

3.1 FOLADRC design

The conventional ADRC is composed of a TD, a PID controller, and an ESO. The TD can coordinate the contradiction between rapidity and overshoot. The ESO regards all of the disturbances as “unknown disturbances” and estimates them. The ADRC structural diagram of the hypersonic vehicle for three-axis attitude control is shown in Fig. 5.

In Fig. 5, the desired angle r^* is the input signal and y is the output signal. The structure inside the dashed frame is the controller. The controlled plant GHV is the model of a General Hypersonic Vehicle (GHV). b is the estimated control gain of GHV, z_1, z_2, and z_3 are the estimated angle, estimated derivative signal of the angle, and estimated “unknown disturbances” of the GHV obtained from the ESO, respectively. u_0 is the ideal control variable and u is the actual control variable. Then, the TD and ESO are introduced.

The TD discrete form can be described by the following equations:

$$\alpha_1(k+1) = \alpha_1(k) + h\alpha_2(k)$$
$$\alpha_2(k+1) = \alpha_2(k) + h((-r^2\alpha_1(k) - \alpha^*(k)) - 2r\alpha_2(k))$$

where $\alpha_1(k)$ and $\alpha_1(k + 1)$ denote the estimated angle values of the current time and next time, respectively.

$$\frac{\partial F_b}{\partial \delta} \big|_{\delta_0=0}, \frac{\partial F_{yc}}{\partial \delta} \big|_{\delta_0=0}.$$

$\alpha_2(k)$ and $\alpha_2(k + 1)$ are the derivatives of $\alpha_1(k)$ and $\alpha_1(k + 1)$, respectively. r and h represent the speed factor and filtering factor, respectively. The larger the value of r, the shorter the transition processes and the faster the response. The larger the value of h, the better the noise filtering. The ESO for each dimensional hypersonic vehicle model can be formulated as the following third-order system:

$$\begin{align*}
e_1 &= z_1 - y; \\
\dot{z}_1 &= z_2 - \beta_1 \text{fal}(e_1, \chi, \delta); \\
\dot{z}_2 &= z_3 - a_1 z_1 - a_0 z_2 + b_0 u - \beta_2 \text{fal}(e_1, \chi, \delta); \\
\dot{z}_3 &= -\beta_3 \text{fal}(e_1, \chi, \delta)
\end{align*}$$

where β_1, β_2, and β_3 are adjustable parameters with different values.

$$\text{fal}(e, \chi, \delta) = \begin{cases} |e|_\chi \text{sign}(e), |e| > \delta; \\ \delta^{-1} e, \text{otherwise,}
\end{cases}$$

$$0 \leq \chi \leq 1, \delta > 0 \tag{25}$$

The FOLADRC is adopted to solve the hypersonic vehicle control problem in this study. Compared with the conventional ADRC, the FOLADRC replaces the PID controller with the FOPID controller and the ESO with the LESO. The FOLADRC structural diagram of the hypersonic vehicle for three-axis attitude control is shown in Fig. 6.

In Fig. 6, the TD, FOPID, and LESO inside the dashed frame form the controller. Then, the TD, FOPID controller, and LESO are designed.

The design of the TD is almost the same as that of the ADRC. The only difference is that only $\alpha_1(k)$ is used in the FOLADRC.

The FOPID can make a control system more accurate and flexible with the additional parameters λ and μ. Then, we simulated how the parameters λ and μ affect the FOPID controller. We set $k_p = 10$, $k_i = 1$, and $k_d = 1$. Figures 7 and 8 give the Bode diagrams of the Fractional-Order Proportional-Integral (FOPI) and Fractional-Order Proportional-Derivative (FOPD) controllers with different values of λ and μ, respectively.

Fig. 5 ADRC structural diagram of the hypersonic vehicle.

Fig. 6 FOLADRC structural diagram of the hypersonic vehicle.
Fig. 7 Bode diagram of the FOPI controller with different values of λ.

Fig. 8 Bode diagram of the FOPD controller with different values of μ.

In Fig. 7, when $\lambda = 1$, the FOPI controller is equivalent to a PI controller. In Fig. 8, when $\mu = 1$, the FOPD controller is equivalent to a PD controller.

Figures 7 and 8 show that the FOPID increases the ranges of the phase frequency characteristic curves and the octave slopes of the amplitude frequency characteristic curves.

To improve the dynamic properties of middle frequency bands and obtain a simple derivation for parameter tuning, the FOPID is calculated as follows:

$$G_c(s) = K_p \left(\frac{K_i}{K_p} s^{-\lambda} + \frac{K_d}{K_p} s^{\mu} \right)$$ \hspace{1cm} (26)

where λ and μ are restricted to $0 < \lambda < 2$ and $0 < \mu < 2$, respectively. The FOPID controller increases the variables λ and μ by 2-DOF, thus enabling more precise and stable control. The structural diagram of the FOPID controller is shown in Fig. 9.

The ESO used in this study is the LESO. For Eq. (25), if we take $\chi_i = 1$, $i = 1, 2, 3$, then Eq. (24) becomes an LESO and it is rewritten as follows:

$$\begin{align*}
\dot{e}_1 &= z_1 - \alpha; \\
\dot{z}_1 &= z_2 - \beta_1 e_1; \\
\dot{z}_2 &= z_3 - a_1 z_1 - a_0 z_2 + b_0 u - \beta_2 e_1; \\
\dot{z}_3 &= -\beta_3 e_1 \\
\end{align*}$$ \hspace{1cm} (27)

Only the estimated “unknown disturbances” of the GHV z_3 is used in the designed FOLADRC. The estimated angle z_1 and the estimated derivative signal of the angle z_2 are not used.

The design of the TD, FOPID controller, and LESO is completed.

3.2 FOLADRC stability analysis

From Eq. (27), the LESO can be described by the state-space form,

$$\dot{z} = (A_e - L_0 C_e) z(t) + B_e u(t) + L_0 y(t)$$ \hspace{1cm} (28)

where

$$A_e = \begin{bmatrix} 0 & 1 & 0 \\ -\bar{a}_1 & -\bar{a}_0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad B_e = \begin{bmatrix} 0 & \tilde{b}_0 & 0 \end{bmatrix}^T, \quad C_e = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$$ \hspace{1cm} (29)

By taking the Laplace transform of Eq. (28), we can derive the following expression:

$$Z_3(s) = G_{zu}(s) U(s) + G_{zy}(s) Y(s)$$ \hspace{1cm} (30)

where

$$G_{zu}(s) = -\tilde{b}_0 \omega_c^3 (s + \omega_c)^{-1},$$

$$G_{zy}(s) = \frac{\omega_c^3 (s + \bar{a}_0 + \bar{a}_1)}{(s + \omega_c)^3}.$$ \hspace{1cm} (31)

The FOLADRC structural diagram of a second-order system with the actuator model is shown in Fig. 10.
From Fig. 10, we can derive the transfer functions from $R(s)$ to $Y(s)$ and from $D(s)$ to $Y(s)$, respectively, as shown in Eqs. (30) and (31),

$$
\frac{Y(s)}{R(s)} = \frac{G_c(s)G_r(s)G_p(s)G_{TD}(s)}{1 + G_c(s)G_r(s)G_p(s) + \frac{1}{b_0} G_r(s)(G_{ZU}(s) + G_{ZY}(s)G_p(s))}
$$

(30)

$$
\frac{Y(s)}{D(s)} = \frac{G_p(s)G_{lc}(s)}{1 + G_c(s)G_r(s)G_p(s) + \frac{1}{b_0} G_r(s)(G_{ZU}(s) + G_{ZY}(s)G_p(s))}
$$

(31)

where $G_p(s) = \frac{b_0}{s^2 + a_0 s + a_1}$, $G_r(s) = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$, $G_{TD}(s) = \frac{r^2}{(s + r)^2}$, $G_{lc}(s) = 1 + \frac{1}{b_0} G_{ZU}(s) G_r(s)$.

In this study, we take $\xi = 0.9$ and $\omega_n = 98$ rad for the actuator model.

Notably, the closed-loop control system is stable if and only if all poles of the closed system transfer functions Eqs. (30) and (31) are on the left side of the complex plane. $-G_{ZU}(s)/b_0$ and $G_r(s)$ are both low-pass filters. $G_{lc}(s)$ is a low-cut filter, thus ensuring that the LADRC achieves a strong anti-disturbance capability and high robustness. We can observe that the larger the values of the bandwidths of the LESO and actuator are, the stronger the anti-disturbance capability of the LADRC is. Furthermore, as the bandwidth of the actuator is fixed, when the value of the bandwidth of the LESO is larger than that of the actuator, the anti-disturbance capability increases only slightly. The value of the bandwidth of the LESO is limited by the actuator.

3.3 FOLADRC Parameter Tuning

In this section, the parameter tuning of the FOPID, ESO, and TD are investigated.

First, we discuss the parameter tuning of the FOPID controller. The FOPID control closed-loop system structure diagram is shown in Fig. 11.

In Fig. 11, G_c represents the FOPID controller, G_r represents the actuator model, and G_p represents the controlled object model. The five control parameters of the FOPID controller are k_p, k_i, k_d, λ, and μ. Five constraints are required to complete parameter tuning. In this study, the constraints to the FOPID open-loop transfer function, including the amplitude, phase angle, derivative of the phase angle at the cutoff frequency, and the amplitude and phase angle at the phase crossover frequency, are considered. The amplitude and phase angle constraints at the cutoff frequency represent the phase margin. The amplitude and phase angle constraints at the phase crossover frequency represent the amplitude margin. The derivative of the phase angle at the cutoff frequency represents the robustness of the FOPID closed-loop control system.

The amplitude and phase angle constraint equations at the cutoff frequency are expressed as follows:

$$
\begin{align*}
|G_c(j\omega_c)G_r(j\omega_c)G_p(j\omega_c)| &= 0 \text{ dB}; \\
\arg(G_c(j\omega_c)G_r(j\omega_c)G_p(j\omega_c)) &= \pi + \varphi_m,
\end{align*}
$$

where ω_c is the expected cutoff frequency and φ_m is the expected phase margin.

The derivative constraint equation of the phase angle

$$
R(s) + E(s) G_c(s) G_r(s) U(s) G_p(s) Y(s)
$$

Fig. 11 FOPID closed-loop control system structure diagram.
at the cutoff frequency is expressed as follows:
\[
\frac{d}{d\omega} \left(\arg(G_c(j\omega)G_r(j\omega)G_p(j\omega)) \right) = 0.
\]

The amplitude and phase angle constraint equations at the phase crossover frequency are expressed as follows:
\[
\begin{align*}
|G_c(j\omega_p)G_r(j\omega_p)G_p(j\omega_p)| &= A_m \text{ d}B; \\
\arg(G_c(j\omega_p)G_r(j\omega_p)G_p(j\omega_p)) &= -\pi.
\end{align*}
\]
where \(\omega_p\) is the expected phase crossover frequency and \(A_m\) is the expected amplitude margin.

Substituting \(s = j\omega\) into Eq. (26), we can derive the following expression:
\[
G_c(j\omega) = K_p \left(1 + \frac{K_i}{K_p} j^{\lambda} \right) \left(1 + \frac{K_d}{K_p} j^{\mu} \right).
\]

Using Euler’s Formula, we can derive the following expression:
\[
j^\lambda = |j^\lambda| e^{i\pi} = e^{i\frac{\alpha \pi}{2}} + j \sin \frac{\alpha \pi}{2}.
\]

Substituting Eq. (33) into Eq. (32), we can derive the following expression:
\[
G_c(j\omega) = K_p \left(1 + \frac{K_i}{K_p} j^{\lambda} \cos \frac{\lambda \pi}{2} - \frac{K_i}{K_p} j^{\lambda} \sin \frac{\lambda \pi}{2} \right).
\]

Then, we can obtain the amplitude and phase angle functions of the FOPID controller as follows:
\[
\begin{align*}
|G_c(j\omega)| &= K_p \left| 1 + \frac{K_i}{K_p} j^{\lambda} \right| \left| 1 + \frac{K_d}{K_p} j^{\mu} \right|, \\
\arg[G_c(j\omega)] &= \text{arctan} \left(\frac{-K_i j^{\lambda} \sin \frac{\lambda \pi}{2}}{K_p + K_i j^{\lambda} \cos \frac{\lambda \pi}{2}} \right) + \\
&\text{arctan} \left(\frac{K_d j^{\mu} \sin \frac{\mu \pi}{2}}{K_p + K_d j^{\mu} \cos \frac{\mu \pi}{2}} \right),
\end{align*}
\]

where
\[
\begin{align*}
\left| 1 + \frac{K_d}{K_p} j^{\mu} \right| &= \\
\frac{1}{K_p} \sqrt{\left(K_p + K_d j^{\mu} \cos \frac{\mu \pi}{2} \right)^2 + \left(K_d j^{\mu} \sin \frac{\mu \pi}{2} \right)^2}, \\
\left| 1 + \frac{K_i}{K_p} j^{\lambda} \right| &= \\
\frac{1}{K_p} \sqrt{\left(K_p + K_i j^{\lambda} \cos \frac{\lambda \pi}{2} \right)^2 + \left(K_i j^{\lambda} \sin \frac{\lambda \pi}{2} \right)^2}.
\end{align*}
\]

The derivative of the FOPID controller phase angle function can be calculated as follows:
\[
\begin{align*}
\frac{d}{d\omega} \left(\arg(G_c(j\omega)) \right) &= \frac{d}{d\omega} \left(\arg \left(1 + \frac{K_i}{K_p} j^{\lambda} \right) \right) + \\
&\frac{d}{d\omega} \left(\arg \left(1 + \frac{K_d}{K_p} j^{\mu} \right) \right), \\
\frac{d}{d\omega} \left(\arg(G_c(j\omega)) \right) &= \frac{1}{\left(1 + \frac{K_i}{K_p} j^{\lambda} \right)^2} \times \\
&\left(\frac{K_i j^{\lambda} \omega^{-\lambda-1} \sin \frac{\lambda \pi}{2}}{\frac{\lambda \pi}{2}} \right) + \\
&\frac{1}{\left(1 + \frac{K_d}{K_p} j^{\mu} \right)^2} \left(\frac{K_d j^{\mu} \cos \frac{\mu \pi}{2}}{\frac{\mu \pi}{2}} \right) - \frac{\cos \frac{\mu \pi}{2}}{\frac{\mu \pi}{2}}.
\end{align*}
\]

The controlled object model transfer function \(G_p(s)\) is expressed as follows:
\[
G_p(s) = \frac{\tilde{b}_0}{s^2 + \alpha_0 s + \tilde{a}_1},
\]
where \(\tilde{a}_0, \tilde{a}_1, \text{ and } \tilde{b}_0\) are the parameters of the nominal model of Eq. (22).

The amplitude and phase angle functions of \(G_p(s)\) are derived as follows:
\[
\begin{align*}
|G_p(j\omega)| &= \left| \frac{\tilde{b}_0}{j \sqrt{(\omega^2 - \tilde{a}_1)^2 + (\tilde{a}_0 \omega)^2}} \right|, \\
\arg[G_p(j\omega)] &= \text{arctan} \left(-\frac{\tilde{a}_0 \omega}{\omega^2 + \tilde{a}_1} \right).
\end{align*}
\]

The derivative of the controlled object model phase angle function is calculated as follows:
\[
\frac{d}{d\omega} \left(\arg(G_p(j\omega)) \right) = \frac{-a_0 a_1 - a_0 a_2}{(\omega^2 + a_1)^2 + (a_0 \omega)^2}.
\]

The actuator model transfer function \(G_r(s)\) is expressed as follows:
\[
G_r(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}.
\]

The amplitude and phase angle functions of \(G_r(s)\) are derived as follows:
\[
\begin{align*}
|G_r(j\omega)| &= \left| \frac{\omega_n^2}{j \sqrt{(\omega^2 - \omega_n^2)^2 + (2 \zeta \omega_n \omega)^2}} \right|, \\
&\text{arctan} \left(-\frac{2 \zeta \omega_n \omega}{\omega^2 + \omega_n^2} \right).
\end{align*}
\]

The derivative of the actuator model phase angle function is calculated as follows:
\[
\frac{d}{d\omega} \left(\arg(G_r(j\omega)) \right) = \frac{-2 \zeta \omega_n^3}{(\omega^2 + \omega_n^2)^2} - \frac{(2 \zeta \omega_n \omega)^2}{(\omega^2 + \omega_n^2)^2}.
\]

Eventually, the five constraint equations are expressed in Eq. (34).
\[
\begin{align*}
|G_c(j\omega_c)||G_r(j\omega_c)||G_p(j\omega_c)| &= 1; \\
\arg(G_c(j\omega_c)) + \arg(G_r(j\omega_c)) + \arg(G_p(j\omega_c)) &= \pi + \phi_m; \\
|G_c(j\omega_p)||G_r(j\omega_p)||G_p(j\omega_p)| &= A_m; \\
\arg(G_c(j\omega_p)) + \arg(G_r(j\omega_p)) + \arg(G_p(j\omega_p)) &= -\pi; \\
\frac{d}{d\omega}(\arg(G_c(j\omega))) + \frac{d}{d\omega}(\arg(G_r(j\omega))) + \frac{d}{d\omega}(\arg(G_p(j\omega))) &= 0 \\
\end{align*}
\] (34)

As it is difficult to solve nonlinear equations, such as Eq.(34), the nonlinear optimization function fmincon of the MATLAB optimization toolbox is used to obtain the control parameters \(k_p, k_i, k_d, \lambda, \) and \(\mu\). We take the derivative of the phase angle at the cutoff frequency as the objective function, the cutoff frequency and phase margin as the nonlinear equality constraints, and the phase crossover frequency and amplitude margin as the nonlinear inequality constraints. The objective function is expressed as follows:

\[
J = \left(\frac{d}{d\omega}(\arg(G_c(j\omega))) + \frac{d}{d\omega}(\arg(G_r(j\omega))) + \frac{d}{d\omega}(\arg(G_p(j\omega))) \right)^2.
\]

The nonlinear equality constraints are expressed as follows:

\[
\begin{align*}
|G_c(j\omega_c)||G_r(j\omega_c)||G_p(j\omega_c)| &= 1; \\
\arg(G_c(j\omega_c)) + \arg(G_r(j\omega_c)) + \arg(G_p(j\omega_c)) &= \pi + \phi_m; \\
\arg(G_c(j\omega_p)) + \arg(G_r(j\omega_p)) + \arg(G_p(j\omega_p)) &= -\pi.
\end{align*}
\]

The nonlinear inequality constraints are expressed as follows:

\[
\begin{align*}
\omega_p < \omega_{pr}; \\
|G_c(j\omega_p)||G_r(j\omega_p)||G_p(j\omega_p)| - A_m > 0,
\end{align*}
\]

where \(\omega_p\) is the actual phase crossover frequency and \(\omega_{pr}\) is the maximum value set for the phase crossover frequency.

The value of \(k_p\) is mainly determined by the cutoff frequency \(\omega_c\). The values of \(k_d\) and \(\mu\) are mainly determined by the phase margin and derivative of the phase angle at the cutoff frequency. The values of \(k_i\) and \(\lambda\) are mainly determined by the phase crossover frequency and amplitude margin. Particularly for the yaw channel, the parameters \(k_i\) and \(\lambda\) are set to zero. The nonlinear equality constraints are the phase margin and cutoff frequency equations. Then, the values of the parameters \([k_p, k_i, k_d, \lambda, \mu]\) for the pitch, yaw, and roll channels are \([36.16, 8.31, 1.38, 1.07, 1.25], [-27.82, 0, -2.79, 0, 1.11], [2.91, 0.17, 0.32, 1.2, 1.1]\), respectively. The bode diagrams of the FOPID controllers for the pitch, yaw, and roll channels are shown in Figs. 12 – 14, respectively.

In Figs. 12 – 14, we can observe that the derivative values of the phase angle at the cutoff frequency are
Fig. 14 Bode diagram of the FOPID controller for the roll channel.

nearly zero. The cutoff frequencies and phase margins satisfy the nonlinear equality constraints. The phase crossover frequencies and amplitude margins satisfy the nonlinear inequality constraints.

Second, we introduce the parameter tuning method for the TD. The TD continuous form can be described by the following equation:

\[
\beta_1 = 3(m_\beta \omega_c) - \bar{a}_0, \\
\beta_2 = 3(m_\beta \omega_c)^2 - \bar{a}_1 - \bar{a}_0 \beta_1, \\
\beta_3 = (m_\beta \omega_c)^3,
\]

where \(m_\beta \) is a constant value.

Thus, parameter tuning of the TD, FOPID controller, and LESO is completed.

4 Simulation

4.1 Simulation of the FOLADRC under the normal operating condition

The initial output parameters are \([V, \theta, \psi_c, \omega_x, \omega_y, \omega_z, \alpha, \beta, \gamma_c, x, y, z] = [15 Ma, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 33 500 m, 0] \). The initial actuator parameters are \([\delta_e, \delta_a, \delta_r] = [0, 0, 0] \). The desired attack and bank angles for the control system are continuous square wave signals with amplitudes of 1° and 10°, respectively. The desired sideslip angle for the control system is zero. The LADRC and FOPID methods are designed and compared. The parameters of the FOPID controller are the same for the FOPID and FOLADRC methods. The parameters of the LESO are the same for the LADRC and FOLADRC methods. The simulation results of the LADRC, FOPID, and FOLADRC methods are shown in Figs. 15–19. The performance parameters (for the first step input signal) of the three controllers are shown in Table 2.

In Figs. 15 and 16, we can observe that the FOLADRC controller has the smallest steady-state error, settling time, and overshoot compared with the FOPID and LADRC controllers. In Fig. 17, we can easily observe that the LADRC and FOLADRC controllers provide better performance than the FOPID controller. The performance parameters (for the first step input signal) of the three controllers are shown in Table 2.

Fig. 15 Output responses of tracking the desired attack angle.
controllers exhibit a better performance in dealing with system coupling than the FOPID controller. The sliding angle tracking errors of the LADRC and FOLADRC methods are within 0.1°. Figures 18 and 19 show that the FOLADRC controller has the smallest settling time among the three controllers. From Table 2, we can conclude that the FOLADRC controller achieves the best control performance under the normal operating condition.

4.2 Simulation of the FOLADRC under the actuator fault condition

To test the performance of the FOLADRC for hypersonic vehicles with actuator faults, we set the failure indicator and bias fault for the actuators as an example. The desired attack and bank angles of the control system are still continuous square wave signals with amplitudes of 1° and 10°, respectively. The desired sideslip angle is still zero. The failure indicator for the actuators is assumed as

\[E_i = \begin{cases} 0, & t \leq 2 \text{s} \\ 0.2, & t > 2 \text{s} \end{cases} \]

and the actuator bias fault is assumed as

\[\tilde{\delta}_i = \begin{cases} 0, & t \leq 9 \text{s} \\ 2 + 0.5 \sin(2t), & t > 9 \text{s} \end{cases} \]

The simulation results of the FOLADRC for hypersonic vehicles with actuator faults are shown in Figs. 20–22. The performance parameters (for the second step input signal) of the FOLADRC under the normal operating condition and actuator fault condition are shown in Table 3.

Figures 20–22 show that the FOLADRC method for hypersonic vehicles with actuator faults can still achieve excellent static and dynamic performances. All of the controllers exhibit a better performance in dealing with system coupling than the FOPID controller. The sliding angle tracking errors of the LADRC and FOLADRC

Table 2 Performance parameters of different controllers.

| Method | Settling time of α (5% error band) (s) | Overshoot of α (%) | Maximum of $|\beta|$ (°) | Settling time of γ_c (5% error band) (s) | Overshoot of γ_c (%) |
|----------|--|---------------------------|-------------------------|---|---------------------------|
| LADRC | 0.49 | 19.7 | 0.08 | 0.37 | 2.0 |
| FOPID | 1.05 | 30.6 | 0.18 | 0.41 | 6.1 |
| FOLADRC | 0.38 | 19.6 | 0.08 | 0.25 | 4.2 |
state variables can rapidly approach their own stable values. The tracking curves are fine, and the sliding angle responses are small. From Table 3, we can observe that the attitude responses of the FOLADRC under the normal operating condition and actuator fault condition are close. The angle errors between angle responses under the normal operating condition and actuator fault condition of the LADRC, FOPID, and FOLADRC methods for hypersonic vehicles are shown in Figs. 23–25. Table 4 shows the average angle errors between the normal operating condition and actuator fault condition.

In Figs. 23–25, we can observe that the FOLADRC method can suppress the actuator bias fault and failure indicator for actuators in the hypersonic vehicle model more effectively than the LADRC and FOPID methods. Table 4 shows that the average angle errors of FOLADRC are the smallest, indicating that the FOLADRC method has the highest robustness against actuator faults.

Table 3 Performance parameters under different conditions.

| Condition | Settling time of α (5% error band) (s) | Overshoot of α (%) | Maximum of $|\beta|$ (°) | Settling time of γ_e (5% error band) (s) | Overshoot of γ_e (%) |
|-----------------|---|---------------------------|------------------------|---|----------------------------|
| Normal condition| 0.370 | 20.7 | 0.08 | 0.244 | 4.4 |
| Actuator fault | 0.393 | 31.9 | 0.11 | 0.249 | 2.4 |
5 Conclusion

In this study, the FOLADRC method, which is the combination of the FOPID method and conventional LADRC method, has been proposed for hypersonic vehicles with actuator faults. The proposed FOLADRC controller combines the advantages of both FOPID and LADRC. Then, the influences of the actuator model on the anti-disturbance capability and parameter tuning of the FOLADRC-based closed-loop control system are analyzed. The frequency-domain analysis method is used to optimize the control parameters of the FOLADRC controller. Finally, the FOLADRC method is applied to the hypersonic vehicle 6-DOF nonlinear model to verify the control effects. The results of the numerical experiments indicated that the FOLADRC method outperforms the FOPID and LADRC methods under both the normal operating condition and actuator fault condition.

Acknowledgment

This work was supported by the National High-Tech Research and Development Program of China (Nos. 11100002017115004 and 111GFTQ2018115005), the National Natural Science Foundation of China (Nos. 61473015 and 91646108), and the Space Science and Technology Foundation of China (No. 105HTKG2019115002). The authors thank the colleagues for their constructive suggestions and research assistance throughout this study.

References

Ke Gao received the BS degree from Beihang University, Beijing, China, in 2010. He is currently pursuing the PhD degree in Beihang University, Beijing, China. His research interest includes active disturbance rejection control technology, fractional-order PID control, fault diagnosis and fault tolerant control, and aircraft control system.

Jia Song received the BS, MS, and PhD degrees from Harbin Engineering University, Harbin, China, in 2005, 2008, and 2009, respectively. She is currently an associate professor with the School of Astronautics, Beihang University, Beijing, China. Her research interests include fault diagnosis and fault tolerant control, data driven control, active disturbance rejection control technology, and the theory of intelligent control and application.

Xu Wang received the PhD degree from Department of Jet Propulsion, Beihang University, Beijing, China, in 1990. He is currently an associate professor in the School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University. His research interests include vibro-acoustic study using deterministic and statistical methods, vehicle noise and vibration mitigation and refinement, and vibration energy harvesting using piezoelectric materials and electromagnetic devices.

Huifeng Li received the BS and PhD degrees from Xi’an Jiaotong University, Xi’an, China, in 1991 and 1998, respectively. She is currently a professor with the School of Astronautics, Beihang University, Beijing, China. Her research interests include aircraft guidance and control technology.