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Abstract: High-entropy pyrochlore-type structures based on rare-earth zirconates are successfully 
produced by conventional solid-state reaction method. Six rare-earth oxides (La2O3, Nd2O3, Sm2O3, 
Eu2O3, Gd2O3, and Y2O3) and ZrO2 are used as the raw powders. Five out of the six rare-earth oxides 
with equimolar ratio and ZrO2 are mixed and sintered at different temperatures for investigating the 
reaction process. The results demonstrate that the high-entropy pyrochlores (5RE1/5)2Zr2O7 have been 
formed after heated at 1000 ℃. The (5RE1/5)2Zr2O7 are highly sintering resistant and possess 
excellent thermal stability. The thermal conductivities of the (5RE1/5)2Zr2O7 high-entropy ceramics are 
below 1 W·m–1·K–1 in the temperature range of 300–1200 ℃. The (5RE1/5)2Zr2O7 can be potential 
thermal barrier coating materials.  
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1  Introduction 

Thermal barrier coating (TBC) materials are refractory 
ceramics with low thermal conductivity that are usually 
applied to metallic surfaces, such as on gas turbines or 
jet engines, to protect the metallic inner parts from 
overheating during long-term use [1–6]. To be an 
excellent TBC material, it requires low thermal 
conductivity, relatively high thermal expansion coefficient 
compatible with metallic substrate, high stability at 
elevated temperature, and good sintering resistance 
[1,4]. Yttrium stabilized zirconia (YSZ) is the 
state-of-the-art TBC material and has been chosen as 
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the industry standard for last decades [4,7,8]. However, 
the accepted upper limit for YSZ during long-term use 
is 1200 ℃ due to its relatively high thermal conductivity 
and the metastable tetragonal phase degradation [9]. 
Great efforts have been devoted to explore new oxide 
compositions with low thermal conductivity and excellent 
thermal stability that can be considered as promising 
candidates in TBC applications [1]. Among the extensively 
studied refractory oxides, the rare-earth zirconates, i.e., 
the ternary metallic oxides (RE2Zr2O7) with pyrochlore 
structure are important candidates [9,10]. The pyrochlores 
RE2Zr2O7, where RE is one or multicomponent of 
lanthanides, exhibit lower thermal conductivity and 
excellent thermal stability comparable to YSZ, making 
them very promising TBC materials for application at 
temperatures above 1300 ℃ [9,10]. Defect engineering 
(e.g., vacancies, substitutions, and lattice distortion) 
has been proven to be an effective way to reduce the 
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Fig. 3  Fracture surfaces of the ceramics (1# and 2#) 
before and after thermal aging at 1300 ℃ for 24 h. 

 
predominantly transgranular fracture, demonstrating 
the relatively strong grain boundaries in the ceramics. 
The fracture surfaces of the other specimens (3#, 4#, 
5#, 6#) and their corresponding thermal aged samples 
demonstrate very similar features (Fig. S1 in the 
Electronic Supplementary Material (ESM)).  

In order to test the stability of the as-sintered 
ceramics at high temperature applications, the ceramics 
(1#–6#) are thermally aged at 1300 ℃ for 24 h. In 
general, 1300 ℃ is a kind of typical high temperature 
for TBC applications [1,7,27]. Figures 3(c) and 3(d) 
depict the fracture surface of the ceramics 1# and 2# 
after thermal aging. Thermal aging of the ceramics  

 

causes curving of the grains, which implies the grain 
boundaries are thermally etched. The grain sizes of the 
thermal aged samples do not show apparent changes, 
indicating the microstructures of the synthesized high- 
entropy ceramics are stable at this condition. The 
fracture surfaces of the ceramics (3#–6#) after thermal 
aging are shown in Fig. S1 in the ESM. The XRD 
patterns of the ceramics (1#–6#) after thermal aging 
can be assigned to pyrochlore-type structure and do not 
show obvious changes compared with the as-sintered 
ceramics, as shown in Fig. S2 in the ESM. All the 
results confirm that these single-phase high-entropy 
pyrochlores are sintering resistant and exhibit excellent 
high temperature stability and durability.  

Figure 4 shows the elemental mappings of the 
single-phase high-entropy ceramics (1#–6#). The rare- 
earth, zirconium, and oxygen elements are uniformly 
distributed, indicating that all the as-sintered ceramics 
are chemically homogeneous.  

Thermal conductivity is one of the key properties 
for TBCs [1,3,4,27]. Many strategies (e.g., substitution 
and vacancy formation) have been applied for reducing 
the thermal conductivity of TBCs [9,28]. Figure 5 shows 
the thermal conductivity of the single-phase high-entropy 
pyrochlore-type structures at temperatures ranging from 
300 to 1500 ℃. In almost all samples, the thermal 
conductivities increase with the increasing temperature. 

 
 

Fig. 4  Elemental mappings of the ceramics (1#–6#) after sintering at 1500 ℃ for 3 h. 
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Fig. 5  Thermal conductivity as a function of temperature 
for the ceramics (1#–6#) after sintering at 1500 ℃ for 3 h. 

 
The thermal conductivity values are below 1 W·m–1·K–1 
from 300 to 1200 ℃, which is nearly 50% lower than 
that of the state-of-the-art TBC (yttria stabilized zirconia) 
with similar porosity levels [9]. High-entropy pyrochlores 
can be considered as solid solutions that five equimolar 
rare-earth cations randomly occupy the same lattice 
crystallographic sites in pyrochlore structure. The mass 
and radius mismatch of the cations result in great lattice 
distortion and strong phonon scattering in materials. 
Lattice distortion, one of the four so-called core effects 
in high-entropy materials, might be one of the main 
reasons that resulting in the reduced thermal conductivities 
of these single-phase high-entropy pyrochlores [26]. 
However, more specific reasons for single-phase high- 
entropy pyrochlores with reduced thermal conductivities 
are still under investigation.  

4  Conclusions 

In summary, single-phase high-entropy pyrochlores 
(5RE1/5)2Zr2O7 based on rare-earth zirconates have 
been successfully produced by solid-state reactions 
between rare-earth oxides and zirconia. The formation 
of (5RE1/5)2Zr2O7 is complete at 1000 ℃. The relative 
densities of these (5RE1/5)2Zr2O7 are in the range of 
70%–80% after sintering at 1500 ℃, which might be 
ascribed to the sluggish diffusion of high-entropy 
materials. The thermal conductivities of (5RE1/5)2Zr2O7 
are below 1 W·m–1·K–1 from 300 to 1200 ℃. These 
(5RE1/5)2Zr2O7 are highly sintering resistant and 
exhibit excellent thermal stability, which makes them 
very promising TBC candidate materials and requires 
further investigation. 
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