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Abstract
applications such as frame rate-up conversion and free
viewpoint TV. Despite significant progresses, it remains
an open challenge especially for image pairs with large
displacements. In this paper, we first propose a novel
optimization algorithm for motion estimation, which
combines the advantages of both global optimization
and a local parametric transformation model. We
perform optimization over dynamic label sets, which
are modified after each iteration using the prior of
piecewise consistency to avoid local minima. Then
we apply it to an image interpolation framework

Image interpolation has a wide range of

including occlusion handling and intermediate image
interpolation. We validate the performance of our
algorithm experimentally, and show that our approach

achieves state-of-the-art performance.

Keywords image interpolation; view synthesis; homo-
graphy propagation; belief propagation

1 Introduction

Image interpolation is a process that generates a
new image using available images, which is useful
for frame rate-up conversion [1], view synthesis [2],
etc. In some applications, the available images have
a wide baseline. Here, baseline means the translation
and rotation that a camera undergoes to capture
image pairs. For example, in virtual street roaming
applications, users can teleport themselves from one
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street spot to another by clicking the directional
arrow. In order to make the transition between
discrete views smooth, it is important to realistically
interpolate intermediate views between wide-baseline
image pairs since the sampled street views are usually
far from each other.

Nie et al. [2] discussed the definition of various
kinds of baselines, and divided them into three
categories based on the median distance between the
KITTI images [3]: small-baseline, medium-baseline,
and wide-baseline. The basic idea of most image
interpolation algorithms is to estimate the motion
field of the input views and map them to the desired
position. Traditional interpolation methods were
usually designed for small baseline images [4], and
recent large displacement optical flow methods [5]
can be regarded as medium-baseline algorithms. Due
to the large translations and rotations involved, it is
still a challenging problem to estimate the motion
field for wide-baseline image pairs.

One classical approach to motion estimation is
to consider it as a labeling problem, which can be
formulated to a global optimization problem in a
Markov random field. In other words, we need to
select the best motion vector from the set of potential
motion vectors for each pixel in the source image,
to minimize the energy defined using some prior
assumptions such as brightness constancy and spatial
smoothness. However, since the space of all possible
motion vectors is usually too large, employing global
optimization over the full image grid in this space has
excessive computational requirements. To reduce the
amount of computation, some approaches use a search
window as the candidate label set [6]. However, for
wide-baseline image pairs, the window size should be
very large to avoid falling into local minima, which
makes the optimization prohibitively slow. Other
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approaches use approximate nearest neighbors in

feature space to prune the set of potential motions [5].

But the proposed set is still excessive, because it

needs to maintain a high recall of the target motions.

So they have to perform optimization on a sampled
image grid, and use interpolation [7] to get the motion
field of the full image grid.

An alternative strategy to estimate the motion is
to compute parametric transformation models locally,
which can transform each pixel to its target position
in the target image [2]. It is an efficient strategy
to deal with wide-baseline image pairs. However,
this strategy cannot guarantee the estimated motion

field to be piecewise smooth, which may lead to

some artifacts of stretching, overlapping, holes, etc.

Therefore, methods using this strategy usually need
an extra global optimization stage to further eliminate
artifacts.

In this paper, we propose a novel method of
motion estimation, which combines the advantages
of both global optimization and local parametric
transformation model based algorithms. We
formulate the problem in terms of global optimization
in a Markov random field. Rather than using
a constant set of candidate motions like previous
methods [5, 6], we adjust the candidate set iteratively

guided by homography fitting and propagation.

More specifically, we first initialize the set of
candidate motions for each pixel by approximate
Unlike
DiscreteFlow [5], where the candidate set is excessive,

nearest neighbor search in feature space.

the size of our candidate set can be very small. Then,
we perform global optimization over the full image
grid with the proposed candidate set. As the small
candidate set may not include the target motion, we
propose a novel strategy to update the candidate set
iteratively through local refinement under a piecewise
parametric model. Our approach requires neither

a large candidate set to guarantee that the target

motion is included, nor a coarse-to-fine scheme to

gradually refine the estimated motions.
In summary, the main contributions of this paper
are as follows:

e a novel optimization framework for motion
estimation based on homography guided belief
propagation,

e application of the proposed motion estimation
method to an image interpolation framework,

/ .
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e experiments to show that our approach is
able to deal well with the wide-baseline image
interpolation problem, and

e a demonstration that our approach also performs
well for traditional small-baseline image pairs too,
through experiments on a typical optical flow
dataset.

The rest of this paper is organized as follows: we
first review the related work in Section 2. Then
in Section 3 we introduce our approach including
candidate set initialization, the inference algorithm,
and the modification strategy for the candidate set.
In Section 4, our algorithm is validated and compared
to other approaches experimentally. Finally, we
conclude and discuss the limitations of this paper
in Section 5.

2 Related work

As mentioned above, the basic idea of image
interpolation algorithms is motion estimation. In
other words, image interpolation is a high-level
application of motion estimation techniques. So
we first review relevant low-level motion estimation
algorithms, and then we mainly review related
work on image interpolation including frame rate-

up conversion and view synthesis.
2.1 Motion estimation

Optical flow methods are typical motion estimation
algorithms, most of which are designed for small-
baseline image pairs. Since the original work of
Horn and Schunck [8], there has been a huge body of
literature on optical flow [9-12]. One typical approach
is to consider it as a labeling problem as mentioned
in Section 1.
by solving an energy minimization problem based

The motion field can be estimated

on brightness constancy and spatial smoothness [13—
15]. Since the space of all possible labels is usually
too large or even infinite [16, 17], some strategies
have been proposed to reduce the label set. The
simplest way is to use a search window centered at the
initial label [6], but it is prone to converging to local
minima, especially when there are large displacements
between image pairs. Discrete Flow [5] pruned the
label set by proposing a diverse set of candidate
labels using approximate K-nearest-neighbor search
and random sampling around the reference pixel.
Veksler [18] decreased the computational cost of the
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graph cuts stereo correspondence technique efficiently
using the results of a simple local stereo algorithm
to limit the disparity search range. The particle
belief propagation technique [19] applied Markov
chain Monte Carlo sampling to the current belief

estimation using a Gaussian proposal distribution.

Besse et al. [20] defined a new family of algorithms,
called PMBP, which combines the best features of
both PatchMatch and particle belief propagation;
they leveraged PatchMatch to produce particle
proposals effectively. Other methods are based on
PMBP [21, 22]. Liet al. [21] proposed a method called
SPM-BP to tackle the computational bottleneck of
PMBP. Hornécek et al. [22] showed that optimization
over high-dimensional, continuous state space can be
carried out using an adaptation of PMBP. We use
belief propagation as the base algorithm to optimize
the objective function too. But instead of using
PatchMatch, we utilize homography estimation to
propose new labels, which performs better than
PMBP-based methods.

There are also many other types of optical flow
estimation algorithms. For example, the recent
advances in deep learning have significantly influenced
the literature on optical flow estimation. However, it
is beyond the scope of this paper to review the entire
literature. For a more detailed survey of optical flow
estimation, please refer to Refs. [23, 24].

2.2 Frame rate-up conversion

Frame rate-up conversion is a typical application
of image interpolation, where one can interpolate
intermediate frames between adjacent video frames
to increase the frame rate of a video. In this
situation, objects undergo very small displacements,
since sequential video frames are very similar. Owing
to their simplicity, block matching algorithms are

commonly used in frame rate-up conversion [25].

These methods divide a frame into non-overlapping
blocks and search for the most similar block in the
following frame. At the pixel level, Mahajan et
al. [26] moved the image gradients through a
given time step and solve a Poisson equation to
reconstruct the interpolated frame. Stich et al. [27]
found edges and homogeneous regions in images for
matching, yielding a dense motion field between
Meyer et al. [28] proposed propagating
phase information across oriented multi-scale pyramid
levels for video interpolation. CNN-based methods

images.

also show good performance for this application.
Long et al. [29] trained a deep CNN to directly
predict the interpolated frames, but the results are
usually blurred. Some methods take advantage
of accurately estimated pixel-wise optical flow to
improve performance [1, 4]. Other methods formulate
frame interpolation as convolution over local patches
and estimate the convolution kernels for each output
pixel [30, 31]. However, these methods are designed
for small-baseline image pairs, and they are ineffective
for wide-baseline image interpolation.

2.3 View synthesis

View synthesis is the process of generating a new view
using existing views taken from multiple cameras.
In this situation, there may be large displacement
because of large translation or rotation of a camera.
Recently, large-displacement optical flow methods
have been proposed. Some methods initialize the
variational model by sparse feature correspondences
or an approximate nearest neighbor field [32], which
helps to escape from the local minima. These methods
are improved by proposing more sophisticated feature
matching algorithms [7]. From a different angle,
Bao et al. [33] obtained large displacement optical
flow by increasing the smoothness of PatchMatch [34].
However, these methods do not perform very well
for wide-baseline image interpolation. Image-based
rendering techniques [35-38] have been proposed to
get better results in wide-baseline view synthesis.
Chaurasia et al. [37] reconstructed a 3D model for
a scene, and compensated for reconstruction errors
by depth synthesis. However, sometimes they may
fail to reconstruct the 3D scene, e.g., if there are
to few images. Some researchers have applied deep
learning methods to view synthesis problem [39-42].
For example, Zhou et al. [39] trained a convolutional
neural network to generate an appearance flow vector
that specifies which pixels in the input image can be
used to reconstruct the output. However, learning
based methods require a large amount of training
data and much training time. Nie et al. [2] proposed
a method that only needs two images as input. They
oversegment the source image into superpixels, and
estimate for each superpixel a homography, which
transforms each superpixel to the target position.
However, without explicitly enforcing a spatial
smoothness constraint, artifacts may occur because
of the discontinuity between different superpixels.

/ .
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Although there is a mesh warping framework to
further eliminate artifacts, some artifacts still remain
like stretching and holes. Our method is similar to
Ref. [2], since we both use the assumption that each
superpixel represents a small plane, and our method

also includes homography fitting and propagation.

But unlike them, we formulate the whole process
of motion estimation as an energy minimization
problem, which explicitly enforces spatial smoothness
and achieves better performance than Ref. [2].

3 Approach
3.1 Background

Our aim is to generate intermediate images between
two given images I7 and I. To that end, we compute
a forward displacement vector from Iy to Iy for each
pixel in I; and a backward displacement vector from
I, to I for each pixel in I5. Our approach considers
this to be a labeling problem, where the label here
is the displacement vector for each pixel. We solve
this problem by minimizing an energy function in a
Markov random field (MRF') over dynamic candidate
label sets. Inspired by belief propagation (BP) [43],
we propose a novel optimization scheme guided by
homography fitting and propagation to avoid local
minima. The pipeline is shown in Fig. 1. First of
all, for each pixel, we generate an initial candidate

label set whose size is very small: see Section 3.3.

Then, to tackle the problem of insufficient candidates
caused by the limited size of the label set, we propose
new labels using homography estimation, and modify
the candidate label sets after each iteration of the
optimization: see Section 3.4.

Before presenting the details of the algorithm,
we first introduce the formulation of our motion

\_ Label set initialization /

Optimization over dynamic label set

estimation approach and some essential concepts of
BP in Section 3.2.

3.2 Formulation of motion estimation

Without loss of generality, we only consider
estimation of forward displacement vectors from I
to I, since the backward displacement from I to
I; can be obtained in exactly the same way. Our
goal is to estimate the motion field w for I, where
w(p) = (u(p),v(p)) is the displacement vector at
pixel p and p =
image I;. Since we formulate this problem as global

(z,y) represents pixel coordinates in

optimization in an MRF, we can also consider w(p)
to be a label for pixel p. The energy function to
be minimized is formulated as Eq. (1); it includes a
data term F4 and a smoothness term E. The data
term represents the similarity between the matched
pixels corresponding to the motion field, and the
smoothness term constrains the labels of adjacent
pixels to be similar. Here, € is a set containing all
neighborhoods on a four-connected image grid, and
A weights the smoothness term.

E(w) = ZEd p))+XA Y Efw(p),w(q))
(p.g)ce
(1)
Let C(p) = {w!, -+ ,wh} be the candidate label

set of each pixel p in image Iy, which contains L
candidate labels. For simplicity, here we set the size
of every pixel’s label set to be the same, L, although
they can differ in our algorithm.

Belief propagation is an inferencing algorithm
which works by passing messages around the 4-
connected image grid iteratively [43]. It updates an
L-dimensional message m/!_, (w{), 1 <i < L, sent
from each pixel p to each neighbor g at each iteration
t from [0,7].
following way, where N (p)\¢q denotes the neighbors

The messages are computed in the

Label set

—>» | [ [ ]| —) Message passing

Label set L7
modification
New label proposal through
homography fitting

Fig. 1 Pipeline of our approach. Label set initialization composes the label sets using N nearest neighbors in feature space. In addition to
iterative optimizing the objective function, the optimization phase marks the worst candidate in each label set by cost and replaces it by a new

label proposal in each iteration.
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of p other than q.

t o .
mp—)q(w'?) - 1<mj1£L<ES(w§7 w?? ) + Ed(wij)
+ Y mS,w)) (2)
seN(p)\q

. . t
Then, with the obtained m,_, ,

belief vector bl,(w}) for each pixel p at each iteration

we can compute a

t using
by (wf) = Ba(w) + Y mi_,(w}) (3)
(p.q)€e

The value of b;('wf ) represents an approximation to
P

the probability that the correct label for p is w; .

K]
After T iterations, the final belief vector bg('wf ) can

be calculated for each pixel, and we can select the
best label w*(p) for every pixel p from its label set
C(p) by minimizing b! (w?) pixelwise.

How we choose the label set C'(p) is very important.

The set cannot be too large because optimization will
be prohibitively slow. But a fixed small candidate

label set may easily cause convergence to local minima.

Therefore, our approach uses a compact dynamic
candidate label set. We initialize a very small label
set for each pixel, and modify the label sets iteratively
during BP to avoid local minima.

3.3 Initialization

We use a multi-scale K-nearest-neighbor search
strategy to initialize the candidate label sets, as
shown in Fig. 2. First, we construct image pyramids
with Ny, levels, where N = 4 in our experiments,
for both I, and Iy, by downsampling the original
images using bilinear interpolation. Let I! (i = 1,2)
be the downsampled image of I; at each pyramid
level /. We compute a feature descriptor for each
pixel in T f and If to help finding correspondences:
for a wide-baseline image pair, the brightness of an
object may change during the transition between

Downsampling | |

\ =p —>|\
[ I

AT

Level 2 Level 3

Level 1

Fig. 2 Label set initialization.

views, so a feature descriptor is more robust when
finding nearest matches. To overcome local scale
and rotation changes in the wide baseline scenario,
we use per-pixel scale-invariant feature transform
(SIFT) descriptors [6] as the dense feature descriptor.
After we get the feature maps D{ for I{ and D¥ for
I, we search K, nearest neighbors in D¥ for every
descriptor in DY under L; distance. Then we get
K labels corresponding to the K, nearest neighbors
for each pixel in I f at level ¢/, and we upsample it to
the original scale of image I; to propose K, initial
labels for each pixel in I;. We collect the initial labels
proposed from each level £ to get the initial candidate
label set of each pixel in I} with size N =3, K,. In
our experiments, we consider K, = 2 labels for each
level £ to get 8 candidates for each pixel. Note that the
multi-scale scheme is only used during initialization.
The optimization stage does not require a coarse-
to-fine scheme to prevent local minima, since we
use the homography guided modification strategy, as
introduced in the next section.

3.4 Optimization
3.4.1

We first introduce the specific data term and

objective function

smoothness term used. We use the truncated L;
distance between the matched SIFT descriptors
(computed in the initialization phase) along with
the displacement as the data term to account
for matching outliers, and we use the truncated
L, distance between labels of neighboring pixels
as the smoothness term to account for motion
discontinuities. These are shown in Egs. (4) and (5),
where D; and D5 are the feature maps of the
original input images I} and I, and 74 and 75 are
the truncation thresholds of the data term and the
smoothness respectively.

Eq(w(p)) = min (|| D1(p) — D2(p + w(p))|l1, Td() |
4
Ey(w(p),w(q)) = min ([[w(p) — w(q)|l1,7) (5)

Given this specific energy function, optimization
can be performed. As mentioned in Section 3.2, a
small candidate label set may lead to local minima
easily, so we propose a novel optimization scheme to
tackle the problem. Inspired by BP [43], we also solve
the minimization problem by passing messages. But
after message passing at each iteration, we perform
a homography check and a label set modification

@ ’Euslvlsgsﬁvl-glg?s @ Springer
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Sintel [49], provided by the authors of Ref. [9], to
infer optical flow. As shown in Fig. 10, Maskflownet
generates more artifacts than our method when
The
performance of Maskflownet dramatically reduces

interpolating between wide-baseline images.

when the displacement between the image pair is
too large, as shown in the third row of Fig. 10; our
method can handle these wide-baseline cases very
well. One possible reason is the lack of training data
suitable for many amateur datasets, which are more
common. Our method takes only two images as input,
which making our method more flexible.

We also compared our method with two variational
model optical flow methods, DiscreteFlow [5] and
SPM-BP [21], which are similar to our optimization
scheme. DiscreteFlow is a representative large
displacement optical flow method, which considers
large-displacement optical flow from a discrete point
of view. It proposes a diverse candidate label set
which is quite large for each pixel, and performs
optimization on this constant label set. Since
their candidate label set is much larger than ours,
optimization has to been performed on a sampled
image grid and they need to get the final flow
field by interpolation, while our method performs
optimization directly on the full image grid. Our

method outperforms DiscreteFlow visually: Fig. 12
shows a comparison. The second column shows the
results of DiscreteFlow while the third column shows
our results. We can see that our approach produces
fewer artifacts such as distortion.

Like our method, PMBP [20] uses the idea
of dynamic label set update, but they utilizes
PatchMatch to propose new labels. SPM-BP takes
advantage of efficient edge-aware cost filtering to
speed up PMBP and improves the performance. The
first column of Fig. 12 shows results from SPM-BP.
We can see that our method perform much better
than theirs, due to our strategy of homography guided
label proposal, which is more effective than SPM-BP’s
approach based on the idea of PatchMatch [34].
4.2.2  Quantitative evaluation

We now quantitatively compare our method with
other work by evaluating results on two kinds of
different datasets. Our method is designed for wide-
baseline image interpolation. However, the baseline
between pairs of images in commonly used optical
flow datasets, such as KITTI [3] and MPI Sintel [49],
is not wide enough [2], so we use wide-baseline
synthetic image pairs photo-realistically rendered
from virtual scenes to quantitatively evaluate our
method. MVS-Synth [53] is a photo-realistic synthetic

Fig. 12 Comparison with Refs. [5] and [21]. There are fewer artifacts in our results.
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Table 1 Interpolation error (PSNR) for the Middlebury benchmark. Image pairs: B: Beanbags, D: Dimetrodon, DD: DogDance, G2: Grove2,
G3: Grove3, H: Hydrangea, M: MiniCooper, R: RubberWhale, U2: Urban2, U3: Urban3, V: Venus, W: Walking

Method B D DD G2 G3 H M R U2 U3 \% w Average
PMBP [20] 25.01 30.58 25.67 26.02 23.12 29.11 22.14 29.00 30.80 27.37 26.74  28.93 27.04
Nie et al. [2] 26.27 3040 2835 31.47 2746  31.72 17.22 27776 3489 30.75 29.25  26.09 28.47
Maskflownet [9] 29.68 36.51 29.85 28.62 26.82 3390 27.94 34.01 3440 33.26 31.50 32.19 31.56
SPM-BP [21] 27.29 3813 30.23 3211 28.75 34.60 26.10 27.15 37.19 3440 33.42 30.81 31.68
Discrete flow [5] 28.27 3857  30.77 3227 28777 3539 30.19 40.87 37.44 3441 33.78 31.66 33.53
Ours w/o modification  29.02 3857  30.92 32,53 2841 3543 30.21 41.90 3749 3563 34.28 31.01 33.78
Ours w/o check 29.29 3859 31.05 3253 2825 3543 30.25 41.90 37.72 36.04 34.31  32.00 33.95
Ours 29.52 38.59 31.05 32.54 29.02 35.43 30.25 41.90 37.78 36.04 34.31 32.00 34.03
Table 2 Motion error (EPE) for the Middlebury benchmark
Method Dimetrodon Grove2 Grove3 Hydrangea  RubberWhale  Urban2  Urban3 Venus Average
PMBP [20] 0.5868 1.3295 2.6422 0.5478 0.2535 2.0244 3.8433 2.2079 1.8020
Nie et al. [2] 0.1759 0.2810 1.1288 0.2595 0.2487 0.5111 1.8042 1.6309 0.7617
Maskflownet [9] 0.2236 0.3309 0.9592 0.2591 0.2630 0.4474 0.9361 0.3279 0.5078
SPM-BP [21] 0.1744 0.2750 0.5872 0.2733 0.2195 0.4727 0.5638 0.2338 0.3752
Discrete flow [5] 0.1399 0.2421 0.7246 0.2231 0.1828 0.3405 0.4260 0.3078 0.3432
Ours w/o modification 0.0829 0.1791 0.8264 0.2114 0.1250 0.5780 0.7761 0.4465 0.4349
Ours w/o check 0.0815 0.1830 0.8834 0.2154 0.1217 0.5371 0.8271 0.4273 0.4440
Ours 0.0807 0.1500 0.6274 0.1601 0.1029 0.2934 0.7623 0.3760 0.3420

dataset that provides ground truth depth maps and

the camera parameters for each rendered RGB image.

Therefore, we can generate ground truth motion fields
between image pairs using the provided ground truth
geometry. We compare our method with previous
works using wide-baseline image pairs rendered from
20 different scenes, where the average ground truth
pixel displacement is about 300 pixels. We give the
average end-point error (EPE) of the motion fields
estimated by different methods in Table 3, which
shows that our method quantitatively outperforms
these previous methods.

The Middlebury dataset [23] is a widely used

dataset for traditional optical flow method evaluation.

Since it provides ground truth for the intermediate
images, we also make comparisons using them
although the average ground truth pixel displacement
is only about 10 pixels. In Table 1, we list the peak
signal to noise ratio (PSNR) between the interpolated

images and the ground truth for different methods.

Table 3 Motion error (EPE) for the MVS-Synth dataset

Method Average EPE
PMBP [20] 109.0240
Maskflownet [9] 44.7966
SPM-BP [21] 44.5387
Discrete flow [5] 30.4418
Nie et al. [2] 27.4805
Ours 26.6020

@Y TSINGHUA
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We also compute the average EPE of estimated motion
fields on image pairs with ground truth motion fields for
different algorithms, as shown in Table 2. Our method
quantitatively outperforms these previous algorithms.

5 Conclusions

We have proposed a novel method of image
interpolation, based on a motion estimation algorithm
using homography guided optimization. We combine
the advantage of both global optimization and a local
parametric transformation model. Optimization is
performed over very small candidate label sets, which
are iteratively modified to avoid local minima, using
piecewise consistency priors with superpixel as the
bridge. We show experimentally that the proposed
method improves the accuracy of both estimated
motion fields and interpolated images.

Our method also has limitations. First, our strategy
for new label proposal based on homography fitting
and propagation uses superpixels as a fundamental
structure. Therefore, our method’s performance
relies on the quality of superpixel segmentation.
In addition, corresponding areas in image pairs
representing different scenes may not be associated
with a homography: our approach does not handle
matching between different scenes very well, which is
also a target of our future work.
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