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Probabilistic Modeling and Optimization of Real-Time Protocol for
Multifunction Vehicle Bus

Lifan Su, Min Zhou, Hai Wan, and Ming Gu�

Abstract: In this paper, we present the modeling and optimization of a Real-Time Protocol (RTP) used in Train

Communication Networks (TCN). In the proposed RTP, message arbitration is represented by a probabilistic

model and the number of arbitration checks is minimized by using the probability of device activity. Our optimized

protocol is fully compatible with the original standard and can thus be implemented easily. The experimental

results demonstrate that the proposed algorithm can reduce the number of checks by about 50%, thus significantly

enhancing bandwidth.

Key words: train communication network; probabilistic modelling; protocol optimization

1 Introduction

Train Communication Network (TCN) is a hierarchical
combination of two field bus systems for digital train
operation. It comprises a Multifunction Vehicle Bus
(MVB) inside each coach and a Wire Train Bus
(WTB) to connect MVBs with the train control system.
Both MVB and WTB have been standardized in IEC
61375[1]. In practice, device status (for instance, status
of the brakes and the air-conditioning units) is reported
to the Central Control Unit (CCU) of the train, and
various devices are controlled by the CCU via MVBs.
The MVB network transmits two types of data using
Real-Time Protocol (RTP): process data and message
data. Process data are small pieces of important data
that are required to be transmitted periodically within
hard time limits. Message data, by contrast, is usually
sporadic information that is transmitted based on
demand, and message size may be large. In this study,
we consider the optimization of MVB message data
transmission.

The physical layer is a wired bus, where each frame
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is actually visible to all devices[1]. If multiple devices
transmit frames simultaneously, the signals interleave
with each other and Manchester encoding is broken.
Thus, no valid frame can be transmitted. To mitigate
this problem, MVBs are coordinated by a bus master.
All devices, including the device that serves as the bus
master, transmit frames under coordination of the bus
master. In general, the bus master sends a master frame,
which includes the instructions required to be followed
by slave devices. Then, the corresponding slave devices
transmit slave frames. For process data, the protocol
ensures that there is a unique responding slave device.
However, there may be multiple responding slave
devices in the arbitration phase of message data
transmission.

Message data is transmitted using sliding window
protocol[1] which is similar to TCP/IP. The content of
a long message is first divided into multiple smaller
pieces, and each piece is transmitted within an MVB
frame. The bus master first sends a master frame to
check whether any device on an MVB wants to send a
message data frame. There is no problem if the number
of such devices is 0 or 1, i.e., there are no slave frames
or only one slave frame, which means no collision
occurs. If there are more than one devices, their frames
collide with each other (the bus master can detect such
a collision), and the master then needs to re-send the
master frame by refining its query to a smaller set of
slave devices until there is one response at most. This
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process is called arbitration.
On an MVB with a large number of devices,

the efficiency of arbitration significantly influences
the bandwidth of message data transmission. Pending
devices are those that want to send message data frames.
IEC 61375 suggests a binary tree-like arbitration
protocol, which is suitable for a network in which
only a small proportion of devices are active. The
aforementioned standard arbitration protocol requires
O.log.n// arbitration checks at most to locate a single
device, where n is the total number of devices. If
there are only two active devices, 1C log.n/ arbitration
checks are needed at most. However, if all n devices
are active, the number of arbitration checks increases
to 2n � 1. Surprisingly, this outcome is worse than that
of the naive round-robin algorithm, which queries all
devices one by one, requiring nC 1 arbitration checks.
As explained above, the probability of device activity
influences the optimal arbitration strategy. The standard
strategy prescribed in IEC 61375 is far from optimal.
In the worst case, it is twice as worse as the optimal
strategy.

We propose a scheme for optimizing MVB message
data arbitration in this paper and harness a probabilistic
model to characterize device activeness. We improve
arbitration by skipping certain intermediate nodes on
the binary structure of the device tree. Such probability
can be obtained from priori knowledge or approximated
based on the frequency of activities within a period of
time before computation. Compared to the standard-
defined reference algorithm, our method can decrease
the number of arbitration checks by 50% in the best
case. Furthermore, the method preserves compatibility
with the standard. The only modification is in the
arbitration algorithm of the bus master. Furthermore,
our method is effective because it has linear time
complexity compared to the number devices.

The remainder of this paper is organized as
follows. Section 2 describes the problem and formally
introduces the current algorithms. Section 3 illustrates
our method. Section 4 describes the performance
evaluation of our method. Section 5 presents related
work and comparison, and our concluding remarks are
given in Section 6.

2 A Motivating Example

The IEC 61375 standard specifies the concept of group
address to facilitate MVB performance optimization[1].

A group is presented by a pair fM; C g, where C is the
value of the pairs common suffix in binary form and M

is the length of the unfixed prefix. In IEC 61375, the
pair fM; C g is also called group address. For example,
if we assume that the address space ranges from 0
to 7, all device addresses are represented by 3 binary
digits. Devices with addresses 2 (0102) and 6 (1102)
are in group fM D 1; C D 2 .102/g because they share
the common suffix 102 in their binary representation.
They are also in group fM D 2; C D 0g, along
with two other devices 0 (0002) and 4 (1002). The
standard requires 0 < M < digits of address, but in
practice, a single device with address A can be viewed
as a generalized group fM D 0; C D Ag. All devices
are in group fM D digits of address; C D 0g, which
simplifies further discussion. It is obvious that a group
can be divided into two smaller groups. Therefore,
all generalized groups form a binary tree, with the
root being is the group with all devices and the leaves
representing single devices. A non-leaf node of the
tree, whose corresponding group is fM; C g, has two
children. Devices in the left child share the common
suffix of “0” appended at the left of the common suffix
of the current node, so the left child has the group
address fM � 1; C g. The right child, whose devices
share the common suffix of a “1” appended at the left,
has the group address fM � 1; C C 2digits of address�M g.

During arbitration, the bus master checks the number
of pending devices in a generalized group by sending a
master frame. Each pending device in the group that has
not sent an event will send a slave frame that contains its
device address. The response can be classified into three
cases: silence is detected, a correct frame is detected, or
a collision is detected[1]. They correspond to no, just
one, and two or more devices pending in the group,
respectively.

An arbitration round starts with a check of all
devices, where a device with pending events shall send
a response slave frame, and only these devices are
allowed to respond until the current round ends. During
arbitration, once the bus master gets a correct response,
it re-sends the response as a master frame and the
corresponding device can send a frame of event data.
This procedure is called event read. In the rest of
the round, this device should not respond to upcoming
request frames. Once all devices are checked, the bus
master rechecks all devices. Normally, all pending
events are sent, so the bus is expected to be silent[1].

A recursive Depth First Search (DFS) algorithm is
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used for arbitration management. In the case that the
bus master acts on a single device, the bus master
checks that device. If the device is pending, the bus
master obtains a correct response and then reads the
event.

In the case that the bus master acts on a group of
devices, the bus master checks all devices in the group.
If the bus master obtains silence, it does nothing. If the
bus master obtains a correct frame, it reads the corre-
sponding event; else, the bus master obtains a collision,
which indicates that there are two or more pending
devices. The bus master acts on the two subgroups.
A round must start with the execution of the DFS
algorithm on the group of all groups[1]. An example
of a three-bit address system is shown in Fig. 1 and
summarized in Table 1.

This conventional method is referenced as the basic
DFS arbitration algorithm in the rest of this paper.

XXX
4

XX0
2

X00
0

000
-

100
0

X10
2

010
1

110
1

XX1
2

X01
2

001
1

X11
0

101
1

XX0
-

XX0
-

Fig. 1 Procedure of DFS algorithm on binary tree. Each
node is labeled with its address and the number of pending
devices within the address. We use X as a wildcard for
the group address. The solid arrows in the tree denote the
sequence of checks performed with basic DFS, while the
dashed arrows represent the difference with the reference
DFS.

Table 1 Actions and responses using DFS algorithm.

Step
Group being

checked
Result

Read event of
device address

1 XXX Collision —
2 XX0 Collision —
3 X00 Silence —
4 X10 Collision —
5 010 Correct(2) 2
6 110 Correct(6) 6
7 XX1 Collision —
8 X01 Collision —
9 001 Correct(1) 1
10 101 Correct(5) 5
11 X11 Silence —
12 XXX Silence —

Notice node X10: when arbitrating its parent group,
XX0, two devices 010 and 110 respond; hence, a
collision occurs. Then, the bus master checks group
X00, and silence is obtained this time. Therefore, the
bus master knows that there are at least two devices in
group X10. As a result, the bus master skips step 4 in
Table 1 without changing the remaining process. Thus,
the number of checks during this round is reduced by
1. This idea is used in the standard, which specifies a
reference implementation[1] called the reference DFS
arbitration algorithm. The method that skips the check
of a group if the group is known to have at least two
pending devices slightly reduces the average number of
checks per round.

Furthermore, if the bus master skips checking
groups XX1 and X01, the number of checks is
further reduced. Skipping certain devices influences the
number of arbitration rounds required, and this number
may change. However, if we know the probability of
each pending device, the bus master can compute the
expected number of checks for both possible decisions.
In what follows, a probability-based optimization
scheme is proposed.

3 Our Proposed Method

We propose a novel probabilistic algorithm that follows
the same framework as depth first search. However,
when the bus master executes the algorithm on a group,
it can determine whether to perform the check for the
group or to skip the check and execute the algorithm on
the two subgroups. The decision is made by comparing
the expected number of checks resulting from the
two choices. The expected numbers are computed
from the probability of each pending device and the
check history. This method employs prior probability
to approximate posterior probability. We assume that
events such as devices being pending are independent.

3.1 The algorithm

We use the abbreviations specified in Tables 2 and 3 to
represent different types of arbitration frames issued by
the bus master and the possible responses obtained by
it.

Algorithm 1 is the pseudocode of our algorithm. It
can be unrolled to a non-recursive style with explicit
state in implementation, especially if the bus master
is deployed on hardware or is designed as a single-
threaded implementation.

In Algorithm 1, in an arbitration round, the bus
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Table 2 Request frame types.

Type Abbr. Arguments Explanation Condition for a device to send a response frame

General
GB Priority of the round Start of a round of specified priority Pending
GE None End of the current round Still pending

Group MR Group address Belonging to the group and still pending
Single SR Device address Address matching and still pending

Table 3 Response of an arbitration check.

Type Arguments Condition
Implied number of pending devices in the
corresponding group of request

SILENCE None If no device response 0
CORRECT Device address of responsing device If single device responses 1
COLLISION None Other cases > 2

master first loads the probability of an event such
that each device is pending by using the function
LoadProbability on line 2. The Preparation function
computes the decisions for all combinations of groups
and the known minimal numbers, and stores the
decisions in global data skipDecision in line 3. The
global data skipDecision function accepts a group
address and the known least pending devices in the
group, and returns the decision about whether the check
for the group should be skipped. The bus master checks
the group of all devices to start a new round in line 4.
If a collision occurs, the function PdfsGroup is called.
This function reads all pending events in a group. It
first checks whether the current check should be skipped
according to skipDecision in line 17. If this is the
case, it recursively checks the two subgroups. Else,
it executes as a DFS algorithm. The known minimal
number of pending devices is always 0 for the left
subgroups because of the lack of adequate information.
For the right subgroups, this number is computed by
subtracting the actual number of pending devices in the
left subgroup from the known minimal number for the
current node group.

3.2 Probabilistic modeling

The essence of the algorithm is to compute
skipDecision. The following notations are used.
Let G be a string of “0” and “1” characters. Group
G contains all devices that share a common suffix
G. In this notation, group 0G and 1G are the two
subgroups of group G. OG is the binary code of G. pi

is the probability of an event such that the device at
address i is pending to send in the current round. Let
x ˚ y D min.x C y; 2/, and x 	 y D max.x � y; 0/.
PG;i is the probability of an event such that the number
of pending devices in group G is i if i is 0 or 1, but

equal to or greater than i if i is 2. Let AG be a random
variable of the number of arbitration checks. To send all
events inside group G, provided that the check for group
G is skipped, and the rest is performed according to our
algorithm. Let UG be the expected number of AG . Let
sG be the known least number of pending devices. Let
tG be the minimum number of 2 and the actual number
of pending devices. E1

G;i;j D UG j .sG D i; tG D j /,
E1

G;i D UG j .sG D i/, where 0 6 i 6 j 6 2. BG

and VG are defined in the same way as AG and
UG , respectively, except that the check for group
G is performed. E2

G;i;j D VG j .sG D i; tG D j /,
E2

G;i D VG j .sG D i/. CG is defined as AG and BG ,
and WG is defined in the same way as UG and VG ,
except that the check of group G is performed according
to our algorithm. EG;i;j D WG j .sG D i; tG D j /,
EG;i D WG j .sG D i/.

We consider the case that a general group consists
of only one device. Each probability can be derived
directly from the probability of the event that the
corresponding device is pending. The probability of
an event such that one device is pending in group G

is the probability that device OG is pending, and it is
impossible to have two or more devices pending in
group G. Moreover, the expected number of arbitration
checks is always 1 because group G should always be
tested. 8̂̂̂̂

<̂̂
ˆ̂̂̂:

PG;0 D 1 � p OG I

PG;1 D p OG I

PG;2 D 0I

EG;i;j D 1; 0 6 i 6 j 6 2I

EG;i D 1; 0 6 i 6 2

(1)

Consider a group that contains a greater number of
devices. We first calculate the probabilities of the group
based on the probabilities of its internal subgroups.
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Algorithm 1 Optimized Algorithm, Pdfs

1 Function PdfsRound is
Data: probability
Data: skipDecision

2 LoadProbability()
3 Preparation()
4 busState send(GB)
5 if busStateDCOLLISION then
6 minimal 2
7 leftActual PdfsGroup(LeftChild(groupAll), 0)
8 rightMin max(minimal�leftActual, 0)
9 rightActual PdfsGroup(RightChild(groupAll),

rightMin)
10 busState send(GE)
11 else if busState = CORRECT(addr) then
12 eventRead(addr)
13 busState send(GE)
14 end
15 end
16 Function pdfsGroup is

Data: skipDecision
Input: address: address, group or single
Input: minimal: known minimal number of pending

devices in the group
Output: actual number of pending devices in the group

17 if not skipDecision(address, minimal) then
18 if address is group then
19 busState send(MR(address))
20 else
21 busState send(SR(address))
22 end
23 if busState = SILENCE then
24 return 0
25 else if busState=CORRECT(addr) then
26 eventRead(addr)
27 return 1
28 end
29 end
30 leftActual PdfsGroup(leftChild(address), 0)
31 rightMin max(minimal�leftActual, 0)
32 rightActual PdfsGroup(rightChild(address),

rightMin)
33 return leftActual + rightActual
34 end

Given that the events in which each device is pending
are independent, the numbers of pending devices in
each subgroup are independent as well. The probability
of an event in which there is no pending device in group
G is the product of the probabilities of the events in
which there is no pending device in each subgroup.

8̂<̂
:

PG;0 D P0G;0P1G;0I

PG;1 D P0G;0P1G;1 C P0G;1P1G;0I

PG;2 D 1 � PG;0 � PG;1

(2)

When the arbitration check is omitted, the bus master
simply executes the process on the two subgroups.
Thus, AG D C0GCC1G . We can calculate the expected
number of checks as follows:

E1
G;i;j D EŒAG jsG D i; tG D j � (3)

By applying the law of total expectation, we get
Eq. (4).

EG;i;jD

2X
xD0

P.t0G D xjsG D i; tG D j /�

EŒAG jsG D i; tG D j; t0G D x� D
2X

xD0

P.t0G D xjsG D i; tG D j /�0B@ 2X
yD0

P.t1G D yjsG D i; tG D j; t0G D x/ �

EŒAG jsG D i; tG D j; t0G D x; t1G D y�

1CA D
2X

xD0

2X
yD0

P.t0G D xjsG D i; tG D j /�

P.t1G D yjsG D i; tG D j; t0G D x/�

EŒAG jsG D i; tG D j; t0G D x; t1G D y�(4)

By the definition of conditional probability, EG;i;j

can be further rewritten as Eq. (5).

EG;i;jD

2X
xD0

2X
yD0

P.t0GDx; t1GDyjsGDi; tGDj /�

EŒAG jsG D i; tG D j; t0G D x; t1G D y� (5)

To compute EG;i;j , it is sufficient to compute both
P.t0G D x; t1G D yjsG D i; tG D j / and EŒAG jsG D

i; tG D j; t0G D x; t1G D y�. We assume that the
SG is irrelevant of P.t0G D x; t1G D yjsG D i; tG D

j /. This assumption reduces computational complexity
without significantly affecting the performance of our
algorithm.

P.t0G D x; t1G D yjsG D i; tG D j / �

P.t0G D x; t1G D yjtG D j / (6)

According to the definition of tG , tG D t0G ˚ t1G , or
j D x ˚ y. If a combination of x and y does not meet
this requirement, the combination is impossible; thus,

P.t0G D x; t1G D yjtG D j / D 0 (7)



566 Tsinghua Science and Technology, October 2016, 21(5): 561–569

By contrast, if x and y satisfy x ˚ y D j , consider
the following two facts: tG D j is implied from
t0G D x and t1G D y, while the random variables t0G

and t1G are independent because the pending events are
independent.

P.t0G D x; t1G D yjtG D j / D
P.t0G D x; t1G D y; tG D j /

P.tG D j /
D

P.t0G D x; t1G D y/

P.tG D j /
D

P0G;xP1G;y

PG;j

(8)

EŒAG jsG D i; tG D j; t0G D x; t1G D y� can be
computed as follows:
EŒAG jsG D i; tG D j; t0G D x; t1G D y� D

EŒC0G C C1G jsG D i; tG D j; t0G D x; t1G D y� D

EŒC0G jsG D i; tG D j; t0G D x; t1G D y�C

EŒC1G jsG D i; tG D j; t0G D x; t1G D y� (9)

First, consider the first term EŒC0G jsG D i; tG D

j; t0G D x; t1G D y�. The condition t0G D x is
introduced because s0G D 0 holds for any group 0G

according to our algorithm. The condition tG D j

can be removed because it is implied by t0G D x and
t1G D y. The condition t1G D y can be removed
because the events in which each device is pending are
independent. We assume that C0G is not related to sG ,
for the same reason above.

EŒC0G jsG D i; tG D j; t0G D x; t1G D y� D

EŒC0G jsG D i; t0G D x; s0G D 0� �

EŒC0G jt0G D x; s0G D 0� D E0G;0;x (10)

Then, we calculate the other term EŒC1G jsG D

i; tG D j; t0G D x; t1G D y�. Similarly, we can obtain
EŒC1G jsG D i; tG D j; t0G D x; t1G D y� as follows.
Note that the bus master knows that there are at least
i 	 x pending devices in 1G.

EŒC1G jsG D i; tG D j; t0G D x; t1G D y� D

EŒC0G jsG D i; t1G D y; s1G D i 	 x� �

EŒC0G jt1G D y; s1G D i 	 x� D E1G;0;x (11)

Based on the above discussion, we can obtain

PG;j E1
G;i;j D

X
x˚yDj

P1G;y .P0G;xE0G;0;x/C

P0G;x

�
P1G;yE1G;i	x;y

�
(12)

If the response to an arbitration check is silence or
correct, one arbitration check is required. Else, the bus
master knows that there are at least two pending devices
and the algorithm is executed on both the subgroups.
Therefore E2

G;i;2 D E1
G;2;2 C 1, where 1 denotes the

check for this group. Thus, PG;kE2
G;i;k

can be obtained
as Eq. (13).8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

PG;0E2
G;i;0 D PG;0I

PG;1E2
G;i;1 D PG;1I

PG;2E2
G;i;2 D PG;2CX

x˚yD2

�
P1G;y .P0G;xE0G;0;x/C

P0G;x

�
P1G;yE1G;2	x;y

��
(13)

The probability of an event such that sG D i and
tG D j if sG D i is

PG;j

2X
kDi

PG;k

(14)

The expected number of arbitration checks on group
G, where the minimal number of pending devices is
known, is calculated as follows:0@ 2X

jDi

PG;j

1AEc
G;i D

2X
jDi

�
PG;j Ec

G;i;j

�
;

c 2 f1; 2g; i 2 f0; 1; 2g (15)

After all the above values are computed, the decision
on skipping the check of the group is formulated, as
Eq. (16).

skipDecision.G; i/ D8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

true (to skip), if

0@ 2X
jDi

PG;i

1AE1
G;i <0@ 2X

jDi

PG;i

1AE2
G;i I

false (not to skip), otherwise

(16)

The values of EG;i;j and EG;i are obtained from
E

1;2
G;i;j and E

1;2
G;i , respectively. This computation process

has a constant complexity for a single node. The
processes of groups having common suffixes of the
same length are independent. The node tree is a perfect
binary tree, so the number of nodes in the tree is
exactly twice the size of the address space minus 1,
and the number of levels of the tree is 1 plus the
binary logarithm of the address space size. Thus,
the Preparation function has linear complexity in the
address space and logarithmic complexity in a parallel
implementation.

4 Evaluation

4.1 Experiment design

To evaluate the performance of our algorithms,



Lifan Su et al.: Probabilistic Modeling and Optimization of Real-Time Protocol for Multifunction Vehicle Bus 567

we conducted a simulation experiment and computed
the number of arbitration checks in a single round.
Three algorithms were selected for comparison with our
algorithm: round-robin polling algorithm, basic DFS
algorithm, and reference DFS algorithm. For a fair
comparison, we assumed that all devices are class X
devices that can transmit message data.

In the experiment, each device was associated with
a given probability of pending. To remove uncertainty,
10 000 rounds were simulated for each input probability
vector of the devices. The total number of checks within
a single arbitration round was recorded.

The probability of events such that devices are pend-
ing was assumed to follow a logit normal distribution.
This distribution maps a variable following normal
distribution into .0; 1/ by the inverse of a sigmoid
function. Different values are generated by changing
the expected value and standard deviation of the
distribution.

4.2 Result and analysis

Figure 2 shows that the proposed algorithm outperforms
all three existing algorithms in terms of the average
number of checks. Figure 3 shows that in 95% of the
rounds in this workload, our algorithm required fewer
arbitration checks than the average number of checks
required by the standard algorithm.

In the polling algorithm, if there are many pending
devices, the first arbitration check will cause a collision.
Thus, all devices need to be checked. Because it is
assumed that all devices can send messages, an almost
straight line can be observed at 257 checks on the
chart. This is the number of device plus 2 (indicating

the start and the end of a round). When the number
of pending devices increases, the performance of the
polling algorithm remains the same, while the average
number of checks required by our algorithm increases,
although it still outperforms the polling algorithm.
Overall, our algorithm has the most improvement with
the workload of few (more than 2) devices pending, as
shown in Fig. 2a.

Figures 2b and 2c show the existence of similar
relationships among the two existing DFS algorithms
and our algorithm. This indicates that the improvement
of our algorithm over the reference DFS algorithm is
not huge. This is because the condition for skipping
the check of a group is hard to satisfy in the reference
DFS algorithm. If a check on a group is to be skipped,
it should contain at least two pending devices. More
specifically, such a group needs to represent a right
subgroup and contain at least two pending devices, and
the sibling of this group should contain no pending
device. In our algorithm, if this condition is met, the
check for that group is skipped as well. In other cases,
the probability that this group has no or one pending
device is PG;0 C PG;1. It is smaller than .P0G;0 C

P0G;1/.P0G;0 C P0G;1/. For low workload, because
the probabilities that each device is pending pi are
low, most groups are very likely to have no or one
device pending, and only the checks for a few large
groups are skipped. Thus, the improvement is not
obvious. When workload is large, smaller groups are
more likely to contain at least two pending devices, so a
greater number of checks are skipped. As the result,
our algorithm shows significant improvement in high
workload cases.
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Fig. 2 Comparison of number of checks. Each dot in the graph is a result of a combination of pi. y-axis: average number of
checks performed in a round using our algorithm. x-axis: average number of checks performed in a round using (a) round-robin,
(b) basic DFS, and (c) reference DFS algorithm.
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Fig. 3 Distribution of number of arbitration checks. The
histogram shows the frequency of number of checks for
10 000 scenarios for moderate workload. The scenarios are
generated randomly. For the i-th device, it is ensured that the
proportion of scenarios, where the i-th device is active, is pi.

5 Related Work

There are some related works on the performance
analysis and optimization of MVB.

Liu et al.[2] analyzed the performance of a MVB
network, including expected polling period, expected
latency, and other properties. Zhu et al.[3] discovered the
relationship between network efficiency and the number
of devices and frame length by using simulation.

Zeng et al.[4] compared two strategies of bandwidth
allocation for different aperiodic data. One follows the
standard, allowing for best-effort transfer ability of
high-priority events, and the other strategy offers static
bandwidth. The former has low latency for high-priority
data and higher latency for low-priority events, while
the latter improves the performance of low-priority data
under heavy loads.

Nie et al.[5] described a method involving the
reallocation of device addresses and using the reserved
priority levels from 2 to 16. Their algorithm also
checks the devices that have sent an event frame in the
prior round. They claimed that their algorithm reduces
latency for high-priority data. Chen et al.[6] introduced
an Particle Swarm Optimization–based scheme by
following the former two approaches to reduce the
number of collisions.

Zhu[7] and Zhu and Guo[8] proposed a WTB-like
system, in which a slave sends process data with an
additional frame to inform the bus master whether a
device is pending. The bus master performs arbitration
accordingly. Thus, collisions can be avoided among
devices with process data abilities.

The two latter methods aim to reduce latency for

high-priority data, which is assumed to be short
in length and is used in emergencies. Latency is
closely related to the time used to lookup the next
pending device. If a few checks are skipped, latency is
expected to decrease. Thus, this effect can be achieved
in our algorithm. However, these methods require
modification of existing devices, which limits their
application. Our algorithm preserves compatibility with
the standard IEC 61375, so existing devices need not be
modified. Only the bus masters need to adopt the poll
algorithm.

Wang et al.[9] proposed an arbitration algorithm
that employs dynamic priority allocation to reduce
network latency and avoid starvation of low-priority
communication requests.

Jimenez et al.[10] presented an approach to simulate
the behavior of MVBs. Their work includes the
modeling of message data transmission. There are
some earlier discussions to optimized aperiodic data
transmitted in other industrial buses.

Cavalieri et al.[11] described a polling protocol based
on Fieldbus. The protocol enables a device to request
data that resides on another device. One of their
methods uses a bit from period data frames to indicate
that the sending device is requesting. The other method
uses a standalone frame to check whether a device
is requesting. Cavalieri et al.[12] also introduced a
priority-based mechanism to increase larger bandwidth
and lower the delay of critical data.

Stefano et al.[13] introduced the communication
protocol BRAIN for process control systems. The
protocol defines a distributed network. The devices send
periodic data based on a common schedule. When a
device sends a frame, if the device is pending to send
aperiodic data, it reserves a time slot in the unused
period by writing to specified fields in the frame.
Thus, this reservation is broadcast to all devices. The
device later sends aperiodic data in the reserved slot.
This mechanism is similar to WTB, but it permits
an aperiodic data frame to reserve another time slot.
Thus, they attempted to maintain fairness in the method,
whereas WTB master uses the round-robin method[1] to
poll all pending devices.

6 Conclusion

In this paper, we explored the optimization of
the arbitration process of MVBs. A probabilistic
model of arbitration was introduced. Based on the
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novel probabilistic characterization, we proposed a
new approach to handle arbitration effectively. The
experimental results demonstrate the effectiveness of
our approach for both high and low workloads.
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