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time. Our system continuously analyzes the correlation
of routes and computes real-time traffic conditions.
When client requests arrive, xGo employs taxi-driver
routing strategies and provides optimal paths to the
online platform. The contributions of this paper are
summarized as follows.
� By mining massive taxi trajectory datasets

and traffic patterns in clusters, we propose
a real-time route recommendation system that
gives best-fitting paths according to customized
requirements and real-time traffic conditions.
Furthermore, it can accurately predict future traffic
conditions around these routes to support the
recommendation. We implement it as a real public
system service to demonstrate its accuracy and
efficiency.
� We propose a clustering algorithm to distinguish

different routes from customized searching results
without the assistance of GIS information. In
order to meet the requirement of near-real-time
response, we design an efficient storage strategy
for massive datasets of spatio-temporal trajectory
data. Experiments reveal that it can improve
indexing and searching performance explicitly.

The rest of this paper is organized as follows.
Section 2 is an overview of our system. Then we
address our storage strategy and indexing in Section 3.
Next, we propose a route clustering algorithm and
dynamic recommendation strategy in Sections 4 and
5, respectively. We evaluate the performance of our
system in Section 6. Related work is presented in
Section 7. Finally, we conclude the paper in Section 8.

2 System Overview

We propose xGo as our online route recommendation
system solution that meets main requirements,
including real-time capability, accuracy, low
computational complexity, and scalability. It comprises
three components: Big Data Analyzer, Taxi Information
Server, and Intelligent Devices, as shown in Fig. 1.

Big Data Analyzer runs on a cloud service platform
based on Hadoop[4]. HBase[5] is embedded into the
system as our database. We refine our storage strategy
for massive data in order to reduce searching time.
Also, we include route clustering and recommendation
algorithms in this component to achieve availability and
real-time capability.

Our Taxi Information Server provides interfaces to
translate user requests into commands to the back-end
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Fig. 1 System architecture.

servers, and report the results to users.
Passengers can use Intelligent Devices (e.g.,

smartphones) to communicate with the cloud service
platform to inquire about online driving routes and
traffic information. Each query should include the
positions of the start and destination point, and a user
can specify these positions by pointing at the map on
the screen of a smartphone.

3 Storage Strategy on Spatial Trajectories

The storage strategy in Big Data Analyzer determines
its searching performance. We choose HBase, a NoSQL
database, to store the massive taxi trajectory datasets
for its good scalability. HBase is a key-value database
on Hadoop that is suitable for random, real-time
read/write access to big data[5]. Also, it is good at
storing unstructured data. Specifically, GPS records
can be regarded as unstructured data because different
trajectories have different GPS points and different
lengths.

3.1 Indexing

The indexing solution can be illustrated as follows.
We divide the map averagely into 4�4 sub-zones
recursively. A balanced tree with 16 branches is
constructed to represent all the sub-zones obtained at
different steps by the tree nodes. We index the nodes
at each level of the tree from 1 to 16 in a fixed
order. Each node also inherits the index from its parent
node as the prefix. This partition and indexing schemes
are illustrated in Fig. 2. Our strategy of partitioning
is similar to that of Geohash[6]. A main difference
between our method and Geohash is that we make
16 divisions for each zone, which correspond to the
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Tier N Tier N+1

11000101   11000111  11001101 11001111        

11000100   11000110   11001100   11001110

11000001   11000011   11001001   11001011

11000000   11000010   11001000  11001010 

0101       0111       1101      1111 

0100       0110      1100       1110 

0001      0011       1001      1011  

0000       0010       1000      1010 

Fig. 2 Partition and indexing schemes.

geographical distribution of Shenzhen.
The map of Shenzhen can be divided into 232 zones

by this indexing, which are represented by a complete
8-level tree. It is considered that the degree of precision
is enough since each leaf zone covers no more than
100 m2. The index of each zone is thus a 32-bit Boolean
string. Every group of four digits in the string from left
to right indicates the index of the zone in a distinct tree-
level, from which we can infer its geographical location
at the corresponding precision. To store a GPS point,
we construct its key as the index of the zone that this
point falls in. The lexicographical order of the keys thus
provides a step-wise proximity rank for GPS points. To
search the closest neighbors of a given point, we first
obtain the key of this point and try to retrieve the records
with the same key. If no record is found, we mask the
last 4-digits of the key and search with the remaining
key, until records with matching keys are found.

3.2 Storage hierarchy

A two-tier hierarchical strategy is designed to manage
the data in HBase. At the bottom tier, we create a Path
Table to store and index all the routes of taxis serving
passengers. The Path Table field is a string that contains
the GPS position and the timestamp of all the data
points belonging to this path. At the upper tier, we
create a Point Table to store all the GPS points, the path
index a GPS point belongs to, and the position of this
point on the corresponding path. The schemas of both
tables are shown in Fig. 3.

This strategy can make possible customized query
functionality, while previous works like Refs. [1, 7]
only support limited numbers of locations (landmarks)
as start/end points. Our system can extract routes that
pass through any two arbitrary positions selected by
the user. With two locations given, we search them
as candidates of start/end points from the Point Table,

Point Table Schema
Latitude Longitude Path Position

index in path

Path Table Schema
Path index Start time Taxi ID Path info

Fig. 3 Points and Paths table schemas in HBase.

based on their geographic locations. Then, two sets
of path indexes are extracted for each point. We then
compute the intersections of these two sets and acquire
the indexes of paths that include these two points. As a
result, all the candidate routes can be fetched from the
Path Table.

The storage strategy of city road networks (Fig. 4)
is set similar to Fig. 3. We utilize the same indexing
method for the road networks data in order to provide
efficient and effective range queries, suitable for
map-matching and traffic estimation in Map-Reduce
architecture. It means that nodes within a short distance
of GPS points will be stored in the same partitions. This
strategy enables quick range query for nodes and roads
near a specific GPS point.

4 Route Clustering

All the historical taxi-routes passing two given positions
can be retrieved based on the storage strategy discussed
in Section 3. In this section, we perform clustering on
these routes without traditional road map matching. It
can merge raw GPS points into limited candidate routes
and makes route analysis more accurate.

4.1 Regularization

Different routes may consist of different numbers of
GPS points (i.e., different dimensions). We should
regularize route data at first in order to project all routes
into a unified space with fixed dimensions.

A GPS position can be considered as a point defined
in 2-dimensional space, and a route can be regarded as
a discrete set consisting of a multiple number of GPS
points. Suppose the raw data of a routeR having n GPS

Node Table Schema
Latitude Longitude Roads indexes

Road Table Schema
Road Bi-direction From To Shape
index node node points info

Fig. 4 Road networks table schemas in HBase.
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points:
R D f.x1; y1/; .x2; y2/; : : : ; .xn; yn/g (1)

where
n 2 ZC and xi 2 Œ�90

ı; 90ı�; yi 2 Œ�180
ı; 180ı/

(2)
xi is longitude and yi is latitude, and the starting

position is .x1; y1/, the terminal position is .xn; yn/.
Represent R to be a function set y D FR.x/.

y D FR.x/ D

8̂̂̂<̂
ˆ̂:
a1x C b1; if x 2 Œx1; x2/I
a2x C b2; if x 2 Œx2; x3/I
: : :

anx C bn; if x 2 Œxn�1; xn�

(3)

where8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

ai D .yiC1 � yi /=.xiC1 � xi /; if xiC1 ¤ xi I
bi D yi � aixi ;

ai ; bi 2 R;
xi 2 Œ�90

ı; 90ı�; yi 2 Œ�180
ı; 180ı/I

n 2 ZC;
i 2 Œ1; n�

(4)

After transforming route data by Eq. (3), all routes
can be projected into a feature space with fixed
dimensionality by regularization. Denote S as the Plane
Rectangular Coordination Systems (PRCS) in which
the GPS position is defined. S˛ is the result of rotating
S counter-clockwise with angle ˛.

Suppose there is a set consisting of routes fR1, R2,
. . . , Rmg, all of which have the same starting point and
terminal point:

(1) Construct PRCS S˛ and transfer FR.x/ to be
F ˛R.x/;

(2) Get k sample points [x˛1 , x˛2 ; : : : ; x
˛
k

] from X -
axis of S˛ , and for each x˛i , calculate y˛i;j=F ˛R (x˛i ) for
each Rj .j 2 ZC and 1 6 j 6 m). At the same time,
get k sample points [y0˛1 ,y0˛2 ; : : : ; y

0˛
k] from y-axis of

S˛ , and for each y0˛i , calculate x0˛i;j=.F ˛R/
�1(y0˛i ) for

each Rj (j 2 ZC and 1 6 j 6 m) where (F ˛R/
�1 is the

inverse function of F ˛R .
(3) The regularization ofRj .j 2 ZC and 1 6 j 6 n)

is
Œ.x˛1 ; y

˛
1;j /; .x

˛
2 ; y

˛
2;j /; : : : ; .x

˛
k ; y

˛
k;j /;

.x0
˛
1;j ; y

0˛
1/; .x

0˛
2;j ; y

0˛
2/; : : : ; .x

0˛
k;j ; y

0˛
k/� (5)

After regularization, the representation of route R is
changed from Eq. (1) to Formula (5). The regularization
is shown in Fig. 5.

There is a parameter set f˛, kg. A route can be seen
as a curve which is in a 2-dimensional space, and ˛
is a parameter which can control the viewing angle of
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Fig. 5 Regularize Ri based on S˛̨̨ (k = 4). This is an example
to calculate fy˛̨̨1, i, y˛̨̨2, i, y˛̨̨3, i, y˛̨̨4, ig

the route. k is a parameter to control the resolution
of interpreting a route. More accurate and detailed
characteristics of this route can be captured when k is
larger. If k is too small, its shape feature may be lost.

4.2 Clustering algorithm

After regularization, all routes can be seen as being
projected into a space with fixed-dimensions 2k.
Based on the representations in Formula (5), the
computation of distance is defined as calculating the
difference between any two routes. Suppose function
f describes the distance between any two points in the
space of any dimension. Given the regularization Ra D
f.x˛1 ; y

˛
1;a/; : : : ; .x

˛
k
; y˛
k;a
/; .x0

˛
1;a; y

0˛
1/; : : : ; .x

0˛
k;a; y

0˛
k/g,

and Rb D f.x˛1 ; y
˛
1;b
/; : : : ; .x˛

k
; y˛
k;b
/; .x0

˛
1;b; y

0˛
1/; : : : ;

.x0
˛
k;b; y

0˛
k/g, we define the difference of any two routes

Ra and Rb is D.Ra; Rb/:

D.Ra; Rb/ D

kX
iD1

f ..x˛i ; y
˛
i;a/; .x

˛
i ; y

˛
i;b//C

kX
iD1

f ..x0
˛
i;a; y

0˛
i /; .x

0˛
i;b; y

0˛
i // (6)

For calculating the distance between any two points
of any dimension, we adopt three types of distance
(i.e., Euclidean Distance, Manhattan Distance, and
Chebyshev Distance). Then, Eq. (6) can be simplified
to be

D.Ra; Rb/ D

kX
iD1

f .y˛i;a; y
˛
i;b/C

kX
iD1

f .x0
˛
i;a; x

0˛
i;b/

(7)
Equation (7) demonstrates that the difference

between Ra and Rb can be calculated based on two
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variables fy˛1;a; : : : ; y
˛
k;a
; x0

˛
1;a; : : : ; x

0˛
k;ag and fy˛

1;b
;

: : : ; y˛
k;b
; x0

˛
1;b; : : : ; x

0˛
k;bg. Therefore, Ri .i 2 ZC and

1 6 i 6 n) can be represented by
fx0

˛
1;i ; : : : ; x

0˛
k;i ; y

˛
1;i ; : : : ; y

˛
k;ig (8)

Based on Formula (8), all routes can be seen to be
projected into a space with dimensions 2k. Then we
can enable general analysis methods on the regularized
data. We utilize Principal Component Analysis (PCA)
to reduce the dimensionality 2k to 3. In the real world,
most normal trajectories repeat in several routes that
people usually take, while abnormal routes are the
result of error or abnormal GPS signals. So in Fig. 6
it shows that there are mainly four-point groups, or four
popular routes, and other dispersed points which can be
considered noises.

Next, we perform clustering by a classic clustering
algorithm K-means[8], which is computationally faster
than hierarchical clustering when K is small. The
performance of K-means greatly depends on the value
of K, which is a parameter determining the number
of clusters in data. In this paper, we use the Davies-
Bouldin Index (DBI)[9] to measure clustering results and
determine the value of K. DBI can be calculated using
Eq. (9):

DBI D
1

n

nX
iD1

max
i¤j

�
�i C �j

d.ci ; cj /

�
(9)

where n is the number of clusters, ci is the center of
cluster i , �i is the average distance of all elements of
cluster i to the centroid ci , and d.ci ; cj / is the distance
between centers ci and cj . The clustering result which
has the smallest DBI is considered to have the best
performance, and K can be determined by that.
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pc1
pc2

p
c3

Fig. 6 The distribution of routes when we reduce the
dimensionality to three through PCA. Different clusters
indicate different shapes of routes.

4.3 Time-complexity and parallelism

Suppose there arem routes in data, where route i has ni
GPS points and k sample points for regularizing each
route. Then the computation complexity isO.n1C� � �C
nm/ for transforming all data into Eq. (3). For route
i , computing the projection of sample points needs at
worst O.ni ) for each sample point, and therefore in
totalO.k.n1C� � �Cnm/) for regularizing all route data.
When k is a constant, it is O.n1 C � � � C nm). In the
clustering phase ofK-means, every route is represented
by a point in k-dimensional space. Suppose there are
at most c iterations; then the complexity is O.mKc).
When c and K are integers that only change in a small
range, the complexity ofK-means can be considered as
O.m).

The time complexity of whole processing is generally
O.n1 C � � � C nm) in real application. Suppose every
route has the same number of GPS point n. Then it is
O.mn) for a complete process. It is a good choice to
speed up this processing by parallel computing. Most of
the processing time is consumed by regularizing data,
which is O.mn), while it can be performed off-line
as a pre-processing step by leveraging Map-Reduce[4].
In the Map-Reduce mechanism, the Map process can
convert original route data into a representation of
alignments, and output a single trajectory with the key
indicating a unique pair of starting point and terminal
point. Then a set of routes with the same pair of
endpoints will be partitioned into a single pair of keys
and a list of values through the Reduce process. The
regularization of these routes will be performed in each
Reducer task. This data preparation process can be
calculated offline, while the clustering algorithm K-
means may be executed online, because its computation
time increases linearly.

5 Dynamic Recommendation

The clustered routes are matched to the roads by map
matching algorithm in Ref. [10]. Then a small number
of frequently traveled routes are presented to users.
Specifically, these routes may be different types (e.g.,
the shortest distance, the fastest driving path, and
the most traveled path). We utilize traveling distance
and frequency of use as measurements to identify the
shortest route and the most-traveled route, respectively.
When selecting the fastest driving route, we need to
predict traffic conditions of each route for the specific
time in the query. Therefore, the recommendation of
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our system is dynamic in terms of the query time, and
also customized for each user.

5.1 Problem definition

From the analysis of the average speeds of sampling
roads, shown in Fig. 7, we find that the average speeds
of the roads probably share a periodic characteristic
along the temporal dimension. That means the average
speed of a specific road may vary periodically in a day
and also a week.

To utilize the time-series patterns in average speed
of each roads in traffic estimation, we introduce time-
series analyzing tools to model the problem. We define
the historical average speeds of a specific road as a
vector V D .v1; v2; : : : ; vt / , where vi is denoted as
the average speed in the i -th time-slot (each time-slot is
a 15-minute interval in our system). It should be noticed
that the length of V is at least larger than one period (672
time slots in a weekly period). V may also be a sparse
vector for some roads[11]. We also denote the average
speed in the current time slot vtC1. If the vtC1 of a road
inside our recommended routes is missing, we estimate
it, denoted as OvtC1, with the known elements in V.

5.2 Estimating methods

We adopt four methods mentioned by Ref. [12]
to estimate traffic conditions for the dynamic
recommendation.
� Random Walk Estimating. Normally, traffic

conditions change gradually and smoothly during
a certain period. The variation in speeds of a
specific road in successive time slots is slight. The
logic of Random Walk is to recover the missing
values OvtC1 with their nearest neighbors vc , which
are the latest non-empty element in V , by OvtC1 D
vc .
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Fig. 7 Weekly patterns for traffic condition (Jan. 2, 2012 –
Jan. 9, 2012).

� Historical Average Estimating. The daily or
weekly homogeneity in traffic condition provides
information to infer the missing values from
historical data. If the data in the same time slot
from the previous periods are available, we can
simply calculate the average speed in the current
period by this equation:
OvtC1 D !vtC1�T C .1 � !/ OvtC1�T (10)

where T is the number of time slots one period
holds and ! is the smoothing parameter derived
from experience. Notice that each time slot can
have its own smoothing parameter and it lies
between 0 and 1. It is suggested to set it smaller
than 0.3 (in Ref. [12]). It responds well to
roads whose average speeds increase or decrease
smoothly and routinely.
� Deviation from Historical Average Estimating.

We label the latest known value to be vc . This
estimation for OvtC1 is a combination of both
historical average Ohc and OhtC1 in a proportional
equation:

OvtC1 D
vc

Ohc
� OhtC1 (11)

� ARIMA Model. An approximation of the missing
value vtC1 is calculated by a fitted seasonal
ARIMA.1; 0; 1/ � .0; 0; 1/ model[12] in Eq. (12).
OvtC1 Dvt�T C �1.vt � vt�T / � �1.vt � Ovt /�

�1.vt�T � Ovt�T /C �1�1.vt�T � Ovt�T /

(12)
This equation is recursive and can be intuitively
divided into five components. vt�T denotes the
information from the last period. �1.vt � vt�T /
holds a parameter �1 denoting the weighting
parameter of the periodical trends between
days and weeks of the traffic condition. It is
worthy to mention that �1 and �1 are both
weighting parameters, and �1.vt � Ovt /;�1.vt�T �
Ovt�T /; and �1�1.vt�T � Ovt�T / are recursive and
represent estimating deviations, respectively.

5.3 Parallelism

Statistics on historical trajectory data can be easily
implemented into a Map-Reduce framework. This
involves two main procedures: map matching and
historical average speed calculation. With multiple
tables inputs (“Point Table” and “Path Table”) into the
Mapper process, each Mapper task quickly searches
for candidate road segments from “Node Table” and
“Road Table” and then map each GPS point to


