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Fig. 3 State changes of SED in queue congestion
management.

3.4 Congestion control at SDN controller

In an SDN controller, when receiving a congestion
trigger message, we use a window allocation algorithm
to meet the flow deadlines and push new flow-table
entries to the switch. We utilize the receive window
field in the TCP ACK header to allocate a specific
window size to each sender. On the other hand, upon
receiving a congestion recover message, the previous
flow-table entries are deleted. In addition, when a new
TCP connection is created or terminated, the window
allocation algorithm will be recalled to assign new
windows to each flow in the context of the congestion
state. The basic congestion control mechanism is
described in Algorithm 1.

3.5 Global Information Flow (GIF) table

In order to communicate between client and server, TCP
uses a three-way handshake to establish a connection,
and a four-way handshake for connection termination.
In the establishing connection, TCP options carried in

Algorithm 1 Congestion Control Mechanism
1. if receiving congestion trigger message then
2 state = CNG
3 call window _allocation()
4:  push new flow table entries
5. end if

6: if receiving congestion recover message then
7. state = NOR

8 call window _release()

9:  delete flow table entries

10: end if

11: if establish (or Delete) a TCP connection then
12:  update GIF table
13:  if state = CNG then

14: call window _allocation()
15: push new flow table entries
16:  end if

17: end if
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the SYN and SYN-ACK packets are used to negotiate
optional functionality.

As shown in Fig. 4, a switch sends an SYN packet
to a controller via a Packet_In message, when finding
no matching entry in the flow table. When receiving
this Packet_ In message, the controller generates a
routing table and pushes it to the switch. In the
same way, a receiver will return an SYN-ACK packet
when receiving an SYN packet. This SYN-ACK packet
follows the same procedure we discussed above. In
these processes, the controller records the information
of the flow to form a GIF table. Figure 5 shows the
detail of the GIF table.

In a GIF table, we record the time (Time) when
this flow is established, and the deadline (Deadline)
and flow size (Flow_size), which we can gain
from applications. Subsequently, we can calculate
the remaining time (RTime) until the deadline and
remaining flow size (RSize) periodically, according to
the OpenFlow protocol. The priority order of the GIF is
sorted following EDF (Earliest Deadline First), which
is known to minimize the number of late tasks, to
minimize the number of missed deadline flows.

The TCP connection termination procedure is shown
in Fig. 6. When the controller receives an FIN packet,
it releases the resources, including deleting GIF entries
and routing tables, with respect to this flow.

3.6 Windows allocation

The sender sending rate should match the link capacity
from the switch to the receiver to avoid TCP incast

Fig. 4 GIF table generation with TCP three-way
handshake.

Fig.5 Global information flow table.
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Fig. 6 GIF table deletion with TCP termination procedure.

congestion and to maintain goodput. We define the
total window, referred to as Twin, as the sum of
the sending window sizes of all the TCP connections

passing through the switch. Therefore,
Twin = Y W, (1) 2)

ieN
From Eq. (1), we have

Twin = K + C x RTTyy, 3)

If a flow wants to meet its deadline, then it should
follow: p
alloc window = 7 X RT T,y 4)

where s is the remaining transmit data size and d is the
remaining time until the deadline.

Algorithm 2 presents the window allocation
algorithm. The GIF table is ordered by giving priority to
the earliest deadline flows. The flows with the earliest
deadlines are allocated first. Assuming that a flow that
misses its deadline is meaningless, we drop the flow if
the deadline is missed (lines 2—4). Non-deadline flows
are allocated to a base rate, which is usually set to 1
MSS (lines 6-8). Lines 10-12 implement the initial
allocation, which corresponds to Eq. (4). Hence, the
window size is allocated so that it meets the deadline
of each flow. If the window requirement is larger than
Twin, we set the flow’s window to zero (lines 13-17). If
there are remaining windows after the initial allocation,
reallocation to non-deadline flows will be performed
later in a fair-share manner (lines 26-28).

4 RSED

As a TCP sender transmits approximately cwnd packets
within the time of RTT, the average throughput (7y,)
can be given by

cwnd x MSS

Tav = T = 5
& RT Ty, ©®)

Algorithm 2 Window Allocation Algorithm
Require:
flow.rtime: remaining time until deadline

flow.size: remaining data size
flow.win: allocated window
total_alloc = 0, req-alloc = 0;

1: for all each flow in GIF do

2. if flow expires then

3 Drop this flow

4 end if

5 // flow.rtime = O for non-deadline flows

6.  if flow.rtime = 0 then

7 flow.win = base_win //get a base window

8 total_alloc = total_alloc + base_win

9

. else
10: if total_alloc < Twin then
1 req-alloc = flow.size/flow.rtime * RTT
12: total _alloc = total _alloc + req_alloc
13: if total_alloc > Twin then
14: // there is not enough windows to allocate
15: total_alloc = total_alloc — req-alloc
16: flow.win = zero
17: else
18: flow.win = req-alloc
19: end if
20: else
21: // there is not enough windows to allocate
22 flow.win = zero
23: end if
24:  end if
25: end for

26: if total_alloc < Twin then

27 allocate the remaining window to non-deadline flows in a
fair-share manner

28: end if

where the default MSS is 1460 byte.
Hence, we know that the range of cwnd can be given

Tawg X RTT,
by 1 < cwnd < %. For a typical DCN,
the bandwidth is 1 Gbps and the average RTT is about

200 ws. Then cwnd & 16.7, so cwnd € [1, 17].

From the perspective of the switch, we can also get

) 30 x MSS + 1 Gbps x 200 s x 0.125
Twin = R

46.7 from Eq. (3) in the abol\\ileS tSypical DCN scenario,
where K = 30 packets and switch queue size is 100
packets. In the extreme case when cwnd of each flow
is 1, we know that the maximum number of concurrent
flows can reach about 46.

However, the number of concurrent flows in typical
DCN is far greater than 46. For example, Yahoo!’s M45
MapReduce cluster!":12] reports that each job consists
of an average of 153 Maps and 19 Reduces. A Google
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web search cluster reports that every query operates
on data spanning thousands of servers, where a single
query reads hundreds of megabytes on average[6’13].
With this in mind, we argue that packet loss is inevitable
when the number of concurrent flows becomes large.
When packet loss happens, the sending server receives
triple duplicate ACKs, decreases its congestion window,
and goes into fast recovery mode. On the other
hand, the cwnd of each flow is no greater than 17,
and in many cases, cwnd = 1 when concurrent flows
are large, resulting in the terrible Full window Loss
Timeout (FLoss-TO) and Lack of ACKs Timeout
(LAck-TO)!!4:15]. This phenomenon leads to TCP RTO
timeout and causes a significant throughput collapse.

As a result, in this section, we propose RSED to
retransmit lost packets quickly. The basic idea of RSED
is that when packet loss happens in a switch, a packet-
loss message to the controller will be triggered via an
OpenFlow channel, resulting in triple duplicate ACKs
being generated by the controller.

The queue congestion management can be extended
as shown in Fig. 7. Packets are dropped when the
switch queue size is greater than the switch buffer.
Moreover, a packet-loss message, which is encapsulated
in an OpenFlow Packet In message, is triggered
and transmitted to the controller. After obtaining the
dropped packet extracted from this Packet_In message,
the controller sends triple duplicate ACKs to the source
of the dropped packet. Ultimately, the sender can
retransmit this packet without a TCP RTO timeout.

5 Experimental Results

5.1 Setup of experiments

In this section, we describe a series of experiments
in the Mininet v2.2.11'¢], using Floodlight!!”! as the
controller and Open vSwitch v2.3.0 (OVS)[!8] as the
OpenFlow switch. The experiments are simulated on
a server where the hardware profile includes 2.4 GHz
Intel CPUs with 8 cores, 16 GB RAM, and a 1TB
hard disk, and the operating system is Ubuntu 14.04.2

00 <K 00 >K  K<O(O)<Omx

AN O A

Q(’)>Qmax D
‘ NOR ’ CNG rop
packets
]
o0 <K
Congestion Congestion Packet
recovery trigger loss

Fig. 7 State change of RSED at switch.
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(kernel 3.16.0-30-generic).

Our SDN controller is implemented on top of the
Floodlight platform that is deployed in a laptop with a
1.9 GHz Intel I5 Core, with 4 GB RAM, and a 500 TB
hard disk. The operating system is also Ubuntu 14.04.2.
For DCTCP implementation, we use public code from
Ref. [19] and add ECN capability to SYN packets[zo].
Meanwhile, we use TCP New Reno?!! (named TCP for
short in the later experiments) as our congestion control
algorithm, and disable the delayed ACK.

For the key parameters of DCTCP, we set g, the
weighted averaging factor, to 1/16, and K, the buffer
occupancy threshold for marking CE-bits, to 20. For
D2TCP, we set d, the deadline imminence factor, to be
between 0.5 and 2.0, following Ref. [6]. The minimum
RTO for all TCP protocols is 30 ms. We set experiment
parameters as shown in Table 1.

5.2 Results

(1) Small-scale experiments In this experiment we have
six senders transmitting flows to a receiver; one has no
deadline, and the others have deadlines. We choose
flow sizes and deadlines to illustrate the impact of a
deadline-aware protocol. We set the five deadline flow
sizes to 8 MB, 12 MB, 30 MB, 50 MB, and 64 MB, with
respective deadlines of 300 ms, 800 ms, 1s, 3 s, and 5.
The flow without a deadline has infinite data to send.
This topology is shown in Fig. 8.

Table 1 The experiment parameters.

Parameter Value
Capacity of links 1 Gbps
Buffer size of each switch port 150KB
Minimum RTO of all TCPs 30ms
Packet size 1500 KB
MSS 1460 KB
RTT 200 ps

Receiver

Infinite and
non-deadline

Fig. 8 Small-scale experiments topology.
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In Fig. 9 we show the throughput achieved by
the six flows over time, for TCP, DCTCP, D2TCP,
and SED. The difference between the various TCPs
is most noteworthy in the 0-3s range. Figure 9a
shows that DCTCP grants all flows equal bandwidth,
and consequently flow 1 and flow 3 miss their
deadlines. Figure 9b shows that D?*TCP’s deadline-
aware congestion avoidance allows the near-deadline
flows to take a larger share of the available bandwidth,
and the far-deadline flows commensurately relinquish
bandwidth. However, it also misses the deadline of
flow 3. DCTCP and D?>TCP provide low latency with
very low buffer occupancies, while still achieving high
throughput. Hence, the completion time of all flows is
shorter than TCP and SED. Flows 1, 2, and 3 with TCP
miss their deadlines, as shown in Fig. 9c. TCP is the
worst of the four transmission protocols. SED meets
all the deadlines of the six flows, although it takes the
longest transmission time. It is because SED allocates
transmission rate according to dividing remaining time
by the remaining transmit data size, so transmission will
last until the deadline.

(2) Large-scale experiments We ran a set of
five deadline-sensitive applications on the network,
equally dividing the total number of hosts among the
applications. Each application consists of one receiver
and n senders, which have the same settings for size and
deadlines. This experiment topology is shown in Fig.
10. We varied n, the number of senders per application,
to explore varying degrees of fan-in-bursts.

In this experiment, we set the five applications’ flow
sizes to 20 KB, 60 KB, 100 KB, 140 KB, and 200 KB,
and deadlines to 200 ms, 300 ms, 350 ms, 400 ms, and
450 ms, respectively. All TCP, DCTCP, and D?TCP
parameters match those in Section 5.1.

Figure 11 shows the goodput of SED and RSED with
TCP, DCTCP, and D?>TCP as we vary the number of
concurrent flows up to 100. As shown in the figure,
the goodput of TCP collapses when the number of
senders is larger than about 5. This phenomenon of
goodput collapsing in DCTCP and D?>TCP happens
when concurrent numbers reach above 25 and 30
respectively. SED performs well as the number of
senders increases to 40. At that time, the link utilization
is about 90%. Subsequently, as the number of senders
continues to expand, the goodput of SED declines on
account of TCP RTO timeouts caused by packet loss
and missed deadlines of TCP flows. However, RSED
significantly outperforms SED, TCP, DCTCP, and
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Fig.11 Goodput for TCP, DCTCP, D>TCP, SED, and RSED
with concurrent senders.

D?TCP when the concurrent flows are greater
than 40. This is because that RSED exploits fast
retransmission of lost packets to avoid TCP RTO
timeout, which will decrease the goodput of TCP.

In our experiment, SED easily handled 40 concurrent
flows without any performance degradation. However,
RSED can significantly improve the performance of
TCP, DCTCP, and D>TCP over TCP incast and deadline
scenarios.

Figure 12 shows the fraction of flows that miss the
deadlines with increasing congestion levels. In this
figure, the Y axis shows the fraction of missed deadlines
for TCP, DCTCP, D?TCP, SED, and RSED as we vary
the degree of burstiness on the X axis by increasing the
number of concurrent flows from 5 to 100.

When the number of senders is small (e.g., 10 or
fewer), all variants meet the deadlines well, but the
missed deadlines of TCP and DCTCP increase rapidly
as the number of flows increases. D?TCP performs
much better than TCP and DCTCP as it gives more
bandwidth to near-deadline flows, but still misses about
30% of the deadlines when the number of senders is
large (e.g., 50). On the other hand, SED does not miss
any deadlines even in highly congested situations. We

Tsinghua Science and Technology, 2016, 21(5): 491-499
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Fig. 12 Fraction of flows that miss deadlines.

note that RSED also shows similar results; it missed
only 1 and 3 deadlines when the number of flows was 45
and 50, respectively. This implies that most deadlines
can be met.

Figure 13 shows how incast congestion affects
performance, and we measure the fraction of flows that
suffer at least one timeout. It is observed that more than
20% of flows that employ TCP or DCTCP experience
network congestion when the number of senders is
greater than 20. D>TCP shows better performance with
regard to congestion avoidance, but the fraction of
timeout flows increases up to around 50% as the number
of senders increases. Through comparing Fig. 12 with
Fig. 13, we can see that incast congestion directly
affects the missed deadlines as flow deadlines range
from 20ms to 60 ms while minimum RTO is 30 ms in
our experiment. Due to fact that the basic idea of SED
is to avoid congestion by controlling the receive window
of each flow, SED and RSED control the total sending
window size to the extent of the bottleneck link capacity
and as a result, suffer some timeouts.

100

TCP
DCTCP
D’TCP
SED
RSED

80

=[lZ\1

60

40

ZOH%
0

10 20 30 40 50
Number of senders

Fraction of fows that suffer timeout (%)

Fig. 13 Fraction of flows that suffer at least one timeout.
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6 Conclusion

In this paper, we propose SED, a new SDN-based
explicit-deadline-aware TCP, designed for cloud data
center networks. Unlike existing approaches that are
either host-based or network-based, we develop and
design an SDN-based solution. Our insight is that in
the SDN environment, the SDN controller is aware of
the bottleneck link capacity as well as the traffic on the
link. Therefore, SED controls the peers’ sending rate
directly to avoid TCP incast congestion and to meet the
application deadline. Furthermore, a retransmission-
enhanced SED, which is termed RSED, is proposed to
deal with TCP RTO timeout problems caused by packet
loss. We evaluate SED via extensive simulations. Our
results confirm that SED can make flows meet deadlines
effectively without starving the non-deadline flows.

As future work, we plan to design an optimized
tuning algorithm for Twin based on mathematical
analysis and to calculate deadline flow precedence.
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