
Big Data Mining and Analytics Big Data Mining and Analytics 

Volume 4 Issue 4 Article 5 

2021 

A Deep-Learning Prediction Model for Imbalanced Time Series A Deep-Learning Prediction Model for Imbalanced Time Series 

Data Forecasting Data Forecasting 

Chenyu Hou 
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, 
China 

Jiawei Wu 
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, 
China 

Bin Cao 
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, 
China 

Jing Fan 
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, 
China 

Follow this and additional works at: https://dc.tsinghuajournals.com/big-data-mining-and-analytics 

 Part of the Computer Engineering Commons, Computer Sciences Commons, and the Data Science 

Commons 

Recommended Citation Recommended Citation 
Hou, Chenyu; Wu, Jiawei; Cao, Bin; and Fan, Jing (2021) "A Deep-Learning Prediction Model for 
Imbalanced Time Series Data Forecasting," Big Data Mining and Analytics: Vol. 4 : Iss. 4 , Article 5. 
DOI: 10.26599/BDMA.2021.9020011 
Available at: https://dc.tsinghuajournals.com/big-data-mining-and-analytics/vol4/iss4/5 

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing. 
It has been accepted for inclusion in Big Data Mining and Analytics by an authorized editor of Tsinghua University 
Press: Journals Publishing. 















272

Algorithm 1 STY training and prediction

Input: Historical time series X = Xl, ... ,Xr; Forecast
horizon H; Lag I

Output: Predicted values of the future H steps
1 Dtotal+-0;

2 for each t in [1, T- H] do
3 LAppend [Xt-l+l, ... ,Xt; Xt+l, ... ,Xt+H] to Dtotal

4 Divide Dtotal into D train , D valid, and D test ;

5 sub-model +- Copies of encoder and decoder of STY ;
6 for i in [1, 1000] do
7 Update sAb-mAdel Ay Ainimizing Ahe Aoss D train ;

lossvalid +-Aalculate Aoss D valid ;

if lossvalid does not decrease in consecutive 50 epochs
then

10 LStop the first-stage training process;

11 Copy weights of sub-model to STY and fix them;
12 for i in [1, 1000] do
13 Update STY by minimizing the loss D train ;

14 lossvalid +-calculate Aoss D valid ;

15 if lossvalid does not decrease in consecutive 50 epochs
then

16 LStop the second-stage training process;

17 Y+- STV(Xr-l+I, . .. ,Xr) ;
18 return y

validation, and test sets (Lines 1-4). Then, we pre-train
the sub-model that excludes the time-varying module of
STY (Lines 5-10). During training, we adopt the early
stop strategy to prevent overfitting (Lines 9 and 10).
Once the first-stage training is stopped, we share the
weights of the sub-model with STY and fix them (Line
11). Then, the time-varying module is trained on the
second stage, following the same training process (Lines
12-16). Finally, we input the latest I historical data to
the STY model and predict the H -step results (Line 17).

4 Experiment

4.1 Experimental settings

Datasets: We collect the following four datasets from
two domains to evaluate the effectiveness of the proposed
model:

• CallTraffic: We collect three real-world call traffic
datasets from China Telecom, including Hangzhou
(HZ), Taizhou (TZ), and Lishui (LS) cities. These
datasets contain call volume records at hourly granularity
from January 2017 to May 2019. Considering that call
volumes in the midnight and early morning are very
low, which is not important for evaluation, we select call
volumes from 7:00 to 21:00 every day for experiments.
In addition, we divide periods into holidays and normal

Big Data Mining and Analytics, December 2021,4(4): 266-278

days according to the Chinese public holidays to study
the performance of different methods.

• Electricity Consumption (ElecCONS): The
electricity consumption dataset is collected from
Commonwealth Edison company. This dataset records
hourly power consumption data from 2014-01-01 to
2018-08-02. Considering that this dataset is collected
in the United States, we divide the time according
to American holidays. This dataset is available on
https://www.kaggle.com/robikscube/hourly-energy­
consumption.

Evaluation metrics: We use MAE and MAPE for
evaluation. They are defined as follows:

1 N
MAE = N L IYi - Yil (18)

t=l

MAPE = ~ t IYi - Yil (19)
N t=l Yi

where Yi and Yi are the ground truth and the
corresponding predicted value, and N is the total number
of all available ground truth. MAE is more affected by
large values, whereas MAPE receives more punishments
from small values.

In our experiments, holidays are regarded as special
periods while normal days are regarded as normal
periods. To compare the performance of the model on
normal and special periods, we calculate the MAE and
MAPE from three perspectives: overall (denoted as
MAE and MAPE), for normal days (denoted as MAE_N
and MAPE--N), and for holidays (denoted as MAE_H
and MAPE_H).

Baselines: The methods in our comparative
evaluation are listed as follows.

• ARIMA[6]: It is a well-known statistic model for
forecasting time series.

• LSTM[l9]: It is a better RNN architecture that
could alleviate the problem of gradient vanishing.

• Seq2Seq[20]: It uses an RNN to encode the input
sequences into a feature representation and another RNN
to make predictions iteratively.

• LSTNet[21]: The convolution neural network and
the skip-recurrent neural network are used in LSTNet to
extract short-term local dependency patterns. To model
long-term patterns, LSTNet additionally exploits the
traditional autoregressive model.

• N-Beats[22]: N-Beats is the state-of-the-art method
for univariate time series forecasting problems. It is a
deep neural architecture based on backward and forward
residual links and a very deep stack of fully-connected



Chenyu Hou et al.: A Deep-Learning Prediction Modelfor Imbalanced Time Series Data Forecasting 273

layers.
Model details: We use min-max normalization to

normalize the target values into [0, 1], and use one­
hot encoding to transform date-time features. In the
evaluation, we rescale the predicted values back to
normal values. The learning rate is 0.001, and the
batch size is 1024. We leverage Adam[23] for stochastic
gradient descent. We adopt the early stop strategy where
training will be terminated when the validation loss
does not decrease during consecutive 50 epochs. We
conduct a grid search over all tuneable hyperparameters
for the STY model. In specific, the stack number of
encoders is chosen from {I, 2, 3}, the number of heads
h is chosen from {2, 4, 6, 8}, the upsampling factor
de is chosen from {2, 3, ... , 8}, and the hidden size of
self-attention dh is chosen from {25 , 26 , ... , 2ID }. For
other baselines, we select the best setting by tuning
their hidden size ranging from {25 , 26 , ... , 2ID }. The
experiment platform is equipped with Intel Core i9­
9940X CPU, 128 GB RAM, and Nvidia RTX 2080Ti
GPU. We implement all neural network models with
Pytorch in Ubuntu.

4.2 Results on CallTraffic

4.2.1 Model comparison
In this section, we compare the performance of
our model against baselines. To compare our model
comprehensively, we conduct experiments at different
forecasting horizons, namely, HI == 14, H 2 == 42, and
H 3 == 98. These three horizons represent "short",
"middle", and "long" forecasting lengths, which can
reflect the performance of our model in different
scenarios.

Table 1 reports the overall MAP and MAPE of
different methods in the three cities. We have the
following observation: (1) When the forecasting horizon
is 14 or 42, the STY model outperforms all baselines
in the three cities. Compared with the runner-up
method, STY achieves 5.02% and 7.21 % improvement
and in terms of MAE when H == 14 and H == 42,
respectively. This result indicates that our proposed
model is good at dealing with imbalanced time series
for short or middle forecasting lengths. (2) When the
forecasting length is 98, LSTNet achieves the best
performance in HZ and TZ while STY outperforms other
methods in LS. Compared with the runner-up method,
their improvements are 0.09%, 3.55%, and 2.93%. This
result implies that LSTNet and STY are competitive for
long-term forecasting. (3) LSTM performs poorly in

Table 1 Overall MAE and MAPE of different methods.

C· M h d H=14 H=42 H=98Ity et 0
MAE MAPE MAE MAPE MAE MAPE

ARIMA 125.21 0.11 145.60 0.13 193.45 0.19
LSTM 309.47 0.35 322.59 0.36 346.80 0.39

HZ Seq2Seq 110.69 0.10 153.42 0.14 206.46 0.19
LSTNet 121.13 0.10 148.69 0.13 166.48 0.15
NBeat 118.65 0.10 150.22 0.14 179.22 0.16
STY 104.81 0.09 131.53 0.12 166.63 0.15

ARIMA 121.66 0.11 145.99 0.13 187.55 0.18
LSTM 284.06 0.30 292.83 0.31 321.43 0.34

TZ Seq2Seq 105.89 0.09 132.02 0.11 148.46 0.13
LSTNet 104.64 0.09 126.50 0.11 131.48 0.11
NBeat 102.88 0.08 122.70 0.10 161.55 0.14
STY 99.47 0.08 111.50 0.09 136.32 0.11

ARIMA 100.90 0.11 122.27 0.14 158.94 0.19
LSTM 229.29 0.31 242.09 0.33 261.26 0.36

LS Seq2Seq 90.18 0.09 119.80 0.13 205.06 0.23
LSTNet 93.99 0.10 93.98 0.10 116.69 0.13
NBeat 83.35 0.09 98.39 0.11 123.09 0.14
STY 77.98 0.08 91.32 0.09 113.26 0.12

all scenarios. By diving into the training process, we
find that the training is stopped immediately because of
the early stop strategy. Thus, LSTM cannot converge,
resulting in poor performance. This phenomenon
demonstrates that LSTM is unsuitable for solving multi­
step forecasting problems.

To study the performance of STY on different types
of periods, we compare the MAE and MAPE on normal
days and holidays. The results are shown in Table 2. STY
achieves the best performance on holidays regardless of
the forecasting length, indicating that STY has a great
advantage in the prediction for holidays. In detail, STY
outperforms the runner-up method by an average of
15.50%, 19.18%, and 21.25% in terms of MAE in the
three cities.

For normal days, STY is not dominant in all cases.
STY achieves the best performance in terms of MAE~

only when the forecasting horizon is 14 or 42. In addition,
the improvements are not as big as those of holidays (by
an average of 7.07%, 4.97%, and 2.28% in the three
cities). When the horizon is 98, LSTNet outperforms
STY by 5.07%, 8.95%, and 1.78% in the three cities,
explaining why the overall accuracy of LSTNet is higher
than that of STY when H == 98 in HZ and TZ.

The accuracy of normal days and that of holidays
significantly differ for each model, which also
agrees with our empirical studies that models suffer
from imbalanced data. However, the gap could be


