Big Data Mining and Analytics
Volume 4 | Issue 4 Article 5

2021

A Deep-Learning Prediction Model for Imbalanced Time Series
Data Forecasting

Chenyu Hou
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023,
China

Jiawei Wu
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023,
China

Bin Cao
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023,
China

Jing Fan
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023,
China

Follow this and additional works at: https://dc.tsinghuajournals.com/big-data-mining-and-analytics

b Part of the Computer Engineering Commons, Computer Sciences Commons, and the Data Science
Commons

Recommended Citation

Hou, Chenyu; Wu, Jiawei; Cao, Bin; and Fan, Jing (2021) "A Deep-Learning Prediction Model for
Imbalanced Time Series Data Forecasting," Big Data Mining and Analytics: Vol. 4 : Iss. 4, Article 5.
DOI: 10.26599/BDMA.2021.9020011

Available at: https://dc.tsinghuajournals.com/big-data-mining-and-analytics/vol4/iss4/5

This Research Article is brought to you for free and open access by Tsinghua University Press: Journals Publishing.
It has been accepted for inclusion in Big Data Mining and Analytics by an authorized editor of Tsinghua University
Press: Journals Publishing.
























Chenyu Hou et al.: A Deep-Learning Prediction Model for Imbalanced Time Series Data Forecasting 273

layers.

Model details: We use min-max normalization to
normalize the target values into [0, 1], and use one-
hot encoding to transform date-time features. In the
evaluation, we rescale the predicted values back to
normal values. The learning rate is 0.001, and the
batch size is 1024. We leverage Adam®®! for stochastic
gradient descent. We adopt the early stop strategy where
training will be terminated when the validation loss
does not decrease during consecutive 50 epochs. We
conduct a grid search over all tuneable hyperparameters
for the STV model. In specific, the stack number of
encoders is chosen from {1, 2, 3}, the number of heads
h is chosen from {2, 4, 6, 8}, the upsampling factor
d. is chosen from {2, 3, ..., 8}, and the hidden size of

self-attention dj, is chosen from {2° 2%, ..., 2191 For
other baselines, we select the best setting by tuning
their hidden size ranging from {2° 2%, ..., 2192 The

experiment platform is equipped with Intel Core i9-
9940X CPU, 128 GB RAM, and Nvidia RTX 2080Ti
GPU. We implement all neural network models with
Pytorch in Ubuntu.

4.2 Results on CallTraffic

4.2.1 Model comparison

In this section, we compare the performance of
our model against baselines. To compare our model
comprehensively, we conduct experiments at different
forecasting horizons, namely, H; = 14, H, = 42, and
H; = 98. These three horizons represent “short”,
“middle”, and “long” forecasting lengths, which can
reflect the performance of our model in different
scenarios.

Table 1 reports the overall MAP and MAPE of
different methods in the three cities. We have the
following observation: (1) When the forecasting horizon
is 14 or 42, the STV model outperforms all baselines
in the three cities. Compared with the runner-up
method, STV achieves 5.02% and 7.21% improvement
and in terms of MAE when H = 14 and H = 42,
respectively. This result indicates that our proposed
model is good at dealing with imbalanced time series
for short or middle forecasting lengths. (2) When the
forecasting length is 98, LSTNet achieves the best
performance in HZ and TZ while STV outperforms other
methods in LS. Compared with the runner-up method,
their improvements are 0.09%, 3.55%, and 2.93%. This
result implies that LSTNet and STV are competitive for
long-term forecasting. (3) LSTM performs poorly in

Table 1 Overall MAE and MAPE of different methods.

City Method B=14 B4 F-98
MAE MAPE MAE MAPE MAE MAPE
ARIMA 12521 0.11 14560 0.13 19345 0.19
LSTM 309.47 035 322.59 036 34680 039
jy Sea2Seq 11069 0.10 15342 0.14 20646 0.19
LSTNet 121.13 0.10 148.69 0.13 166.48 0.15
NBeat 118.65 0.10 15022 0.14 179.22 0.16
STV 10481 0.09 13153 0.12 166.63 0.15
ARIMA 121.66 0.11 14599 0.13 187.55 0.18
LSTM 284.06 030 292.83 031 32143 034
1z Sea2Seq 10589 0.09 13202 0.1 14846 0.13
LSTNet 104.64 0.09 12650 0.11 131.48 0.11
NBeat 102.88 0.08 12270 0.10 161.55 0.14
STV 9947 0.08 11150 0.09 13632 0.11
ARIMA 10090 0.11 12227 0.14 15894 0.19
LSTM 22929 031 242.09 033 26126 036
Lg Sea2Seq 9018 0.09 11980 0.3 20506 0.23
LSTNet 9399 0.10 93.98 0.0 116.69 0.13
NBeat 8335 0.09 9839 0.11 123.09 0.14
STV 7798 0.08 9132 0.09 11326 0.12

all scenarios. By diving into the training process, we
find that the training is stopped immediately because of
the early stop strategy. Thus, LSTM cannot converge,
resulting in poor performance. This phenomenon
demonstrates that LSTM is unsuitable for solving multi-
step forecasting problems.

To study the performance of STV on different types
of periods, we compare the MAE and MAPE on normal
days and holidays. The results are shown in Table 2. STV
achieves the best performance on holidays regardless of
the forecasting length, indicating that STV has a great
advantage in the prediction for holidays. In detail, STV
outperforms the runner-up method by an average of
15.50%, 19.18%, and 21.25% in terms of MAE in the
three cities.

For normal days, STV is not dominant in all cases.
STV achieves the best performance in terms of MAE_N
only when the forecasting horizon is 14 or 42. In addition,
the improvements are not as big as those of holidays (by
an average of 7.07%, 4.97%, and 2.28% in the three
cities). When the horizon is 98, LSTNet outperforms
STV by 5.07%, 8.95%, and 1.78% in the three cities,
explaining why the overall accuracy of LSTNet is higher
than that of STV when H = 98 in HZ and TZ.

The accuracy of normal days and that of holidays
significantly differ for each model, which also
agrees with our empirical studies that models suffer
from imbalanced data. However, the gap could be



