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Objective: Deep brain stimulation (DBS) has promising outcomes in 

treatment-resistant depression (TRD). Several regions, including the

subcallosal cingulate gyrus (SCG), nucleus accumbens, ventral capsule/

ventral striatum, and lateral habenula (LHb), can be targeted for TRD

treatment. However, which target provides the best results remains

controversial. 

Methods: We evaluated the antidepressant and antianxiety effects of

DBS of the ventral medial prefrontal cortex (vmPFC) and LHb in stressed

rats using the forced swimming test (FST) and open field test (OFT). 

Results: Bilateral high-frequency DBS of the vmPFC and LHb induced 

a significant decrease of the immobility time compared with that of

controls (p < 0.05) in the FST. In the OFT, rats receiving vmPFC and LHb

DBS showed no difference in the number of entries and time spent in the

center area compared with those of control rats. However, vmPFC DBS

provoked a significant decrease of these parameters compared with those

of rats receiving LHb DBS (p < 0.05). 

Conclusion: These results suggested that vmPFC and LHb DBS had 

similar antidepressant effects, whereas LHb DBS was more effective in

reducing anxiety-like behaviors. The results provide a reference for

high-frequency DSB of SCG and LHb in TRD. 
  

 
 

1 Introduction 
 

Deep brain stimulation (DBS) has shown promising 

outcomes in treatment-resistant depression (TRD) 

[1, 2]. Clinical studies have identified the lateral 

habenula (LHb) and subcallosal cingulate gyrus 

(SCG) as putative therapeutic brain targets of 

DBS in TRD [3–8]. However, the better target for 

DBS use in TRD patients remains controversial. 

Investigating the effects and the therapeutic neural 

mechanisms of DBS of homologous regions in 

animals might contribute to clarify this issue [9, 10]. 
 

Corresponding author: Zhiyan Wang, E-mail: wzyann@126.com; Lei Luo, E-mail: LUOLEI626922@163.com 



Journal of Neurorestoratology 

Journal of Neurorestoratology 
 
 

44 

The LHb is a phylogenetically old structure 

located in the dorsomedial portion of the thalamus 

and is highly homologous between rodents and 

humans [11, 12]. The ventral medial prefrontal 

cortex (vmPFC), particularly the infralimbic cortex, 

is the region in rodents corresponding to the 

SCG of humans [13, 14]. Previous studies have 

suggested that high-frequency DBS of vmPFC 

and LHb has a potential antidepressant effects 

in humans and animals [3, 6, 15, 16]. Anxiety is  

a common comorbidity diagnosed at a rate as 

high as 75% in patients with depression [17, 18]. 

Although no specific adverse effects were observed 

in a randomized, controlled trial of SCG DBS in 

TRD, a minority of patients presented increased 

anxiety levels [6]. Additionally, only a few patients 

with TRD received LHb DBS so far and its effect 

on anxiety remains unclear [4, 7, 8]. 

Here, we investigated the antidepressant effects 

of vmPFC and LHb DBS in the forced swim test 

(FST). Moreover, anxiety, which is an important 

aspect of depressive-type states in rodents, was 

assessed using the open field test (OFT). 
 

2 Methods 
 

2.1 Animals 

A total of 34 male Sprague–Dawley rats (Animal 

Center of Peking University, China) weighing 

250–300 g at the start of experiments were used. 

Rats were habituated to the environment for 

7 days and maintained on a 12:12-h light–dark 

cycle (lights off at 6:30 a.m.). The room tem-

perature was controlled at 22 ± 3 °C, and the 

relative humidity was 60% ± 15%. Food and water 

were available ad libitum. All experiments met 

the requirements of the National Institute of 

Health Guide for the Care and Use of Laboratory 

Animals (National Research Council 1996), and 

the procedures were approved by the Animal Use 

Committee of Peking University Health Science 

Center (Approval No. LA2017131). 

2.2 Surgical procedures 

Rats were anesthetized with 40 mg/kg sodium 

pentobarbital and then were secured in a 

stereotaxic apparatus. The electrodes were 

implanted into either the vmPFC (anteroposterior 

3.0 mm from bregma, mediolateral 0.4 mm,  

and dorsoventral −4.6 mm from dura) or the 

LHb (anteroposterior −3.7 mm from bregma, 

mediolateral 0.7 mm, and dorsoventral −5.4 mm 

from dura). Monopolar stainless-steel electrodes 

(125 μm in diameter and 0.5 mm of exposed 

surface) were used as cathodes. Similar electrodes 

were secured to the bone screw in the skull as 

anodes. Identical electrodes were implanted in 

control animals but the stimulation was turned 

off. After surgery, rats were housed individually 

to recover for 7 days. Then, behavioral experiments 

were conducted. 

2.3 Electrical stimulation and FST 

Stimulation was applied using a handheld device 

(PINS Medical model T902, Beijing, China) at 

150 μA, 130 Hz, and 90 μs [19, 20]. The stimulation 

time frame was selected based on previous 

work [20]. 

On the first day, rats were individually placed 

in a cylinder (20 cm diameter, 80 cm tall) filled 

with water at 25 ± 1°C and a depth of 40 cm for 

15 min. On the second day, DBS-treated animals 

received continuous DBS for 4 h and then were 

subjected to FST for 5 min. The time spend   

by the animals exhibiting specific behaviors 

(immobility, swimming, or climbing) during the 

last 4 min of the test was blindly calculated [21]. 

In the FST, low immobility time is associated 

with an antidepressant effect. 

2.4 OFT 

On the third day, rats underwent 1 h of stimulation 
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followed by a 7-min OFT, which was performed 

in a squared 100 cm × 100 cm × 50 cm box 

(Shanghai Mobiledatum Information Technology 

Co., Shanghai, China). Time spent (C-Time) and 

numbers of entries (C-Dis) in the central area  

(60 cm × 60 cm) and total distance traveled (T-Dis) 

in the field were measured using the SMART 

software (version 2.5.21, Panlab, SMART Video 

tracking, Boston, USA). The box was cleaned with 

75% ethanol between tests. 

2.5 Histology 

The correct placement of DBS electrodes in the 

vmPFC and LHb was verified for all rats after 

completion of the experiments. All DBS tips 

were mapped onto standardized sections of the 

rat brain (shown in Fig. 1). Two rats were excluded 

from the analysis because of incorrect electrode 

placement in the vmPFC. Therefore, 12 rats 

receiving LHb DBS and 10 rats receiving vmPFC 

DBS were analyzed. 

2.6 Statistical analysis 

All data were presented as means ± standard 

errors. FST and OFT data (shown in Figs. 2 and 3) 

were analyzed by one-way ANOVA and Bartlett’s 

post hoc test using IBM SPSS (version 20, IBM 

Corporation, Armonk, New York, USA). The 

Bartlett’s test was used to test the homogeneity of 

variance across groups. Graphs were produced 

using GraphPad PRISM 6.0. Statistical significance 

was set at p < 0.05. 
 

3 Results 

3.1 Impact of vmPFC and LHb DBS on FST 

performances 

Animals treated with bilateral high-frequency 

DBS showed a significant decrease in the 

immobility time [one-way ANOVA; F = 7.556, p = 

0.023; Fig. 2(a)]. Post hoc comparisons revealed 

that LHb DBS induced a 56.71% decrease of the 

immobility time compared with that of control 

animals (p = 0.015). Similarly, a 63.80% shorter 

immobility time was observed after vmPFC 

stimulation (p = 0.009). Additionally, bilateral 

high-frequency DBS of the LHb and vmPFC 

increased the climbing time of animals [one-way 

ANOVA; F = 24.71, p < 0.0001; Fig. 2(b)]. Moreover, 

the swimming time showed no significant  

 

Fig. 1 Schematic of coronal sections depicting implantation sites. (a) vmPFC at +3.0mm from rostral to bregma. (b) LHb at 

−3.48, −3.60, −3.84 and −4.20mm from rostral to bregma. 
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Fig. 2 Antidepressant-like behavioral outcomes of vmPFC 

and LHb DBS. Bilateral high-frequency DBS showed a 

significant decrease in immobility time (a) and a significant 

increase in climbing time (b) in the FST. There was no 

difference in the time of swimming in the FST (c). Control 

group, n = 12; LHb DBS group, n = 12; vmPFC DBS group, 

n = 10. One-way ANOVA, *, p < 0.05; ***, p < 0.001. Post hoc 

comparisons, #, p < 0.05; ##, p < 0.01. 

difference among the three groups [one-way 

ANOVA; F = 0.53, p = 0.77; Fig. 2(c)]. These results 

suggested that bilateral high-frequency DBS of 

the LHb or the vmPFC had similar antidepressant 

effects. 

3.2 Impact of vmPFC and LHb DBS on OFT 

performances 

Bilateral high-frequency DBS of the vmPFC  

and LHb induced significant differences in the 

distance [one-way ANOVA; F = 8.78, p = 0.013; 

Fig. 3(a)] and time spent [one-way ANOVA; 

F = 6.07, p = 0.048; Fig. 3(b)] in the central area. 

Post hoc comparisons revealed that the distance 

and time spent in the center were increased after 

LHb DBS compared with those of vmPFC DBS 

rats (t = 2.63, p < 0.05), whereas there was no 

difference between rats receiving LHb or vmPFC 

DBS and control animals. Moreover, there was no 

difference in the total distance traveled among 

the three groups [one-way ANOVA; F = 4.46, p = 

0.11; Fig. 3(c)]. The example trajectory diagrams 

of different group rats in the OFT were showed 

in Fig.4. These results suggested that LHb and 

 

Fig. 3 Anxiety-like behavioral outcomes of vmPFC and 

LHb DBS. Bilateral high-frequency DBS showed a significant 

decrease in center distance (a) and center time (b) in the OFT. 

There was no difference in the total distance in the OFT (d). 

Control group, n = 12; LHb DBS group, n = 12; vmPFC DBS 

group, n = 10. *, one-way ANOVA, p < 0.05. 

vmPFC DBS did not affect the rat motor activity, 

and bilateral high-frequency LHb DBS seemed 

to be more effective in reducing anxiety-like 

behaviors. 
 

4 Discussion 
 

The bilateral high-frequency LHb and vmPFC 

DBS induced a decrease of the immobility time 

in the FST, suggesting that DBS of both regions 

was similarly effective to generate antidepressant 

effects. However, high-frequency DBS of the LHb 

only provoked an increase of the time spent and 

number of entries in the center area in the OFT, 

indicating that LHb DBS might be more effective 

in reducing anxiety-like behaviors. 

The LHb was identified as a potential target  

of DBS in TRD based on its location, as it is     

a link between the forebrain and brainstem 

monoaminergic nuclei in animals [11]. Moreover, 

the pathogenesis of depression described in 

detail by Yang et al. involves an increase in the 

number of burst-firing neurons in the LHb [21]. 

The SCG was identified as a potential target of 

DBS for TRD based on the increase activity in SCG 

of depressive humans observed by Mayberg    
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et al. [22]. DBS of both targets improves the 

depressive symptoms in participants with TRD 

[3–8, 23–25]. However, DBS of neither of them 

was proven effective in randomized, controlled 

clinical studies [6]. The preclinical studies also 

showed the antidepressant effects of LHb and 

vmPFC DBS in different animal models of 

depression [14, 26–28]. Moreover, both LHb and 

vmPFC DBS affect the monoaminergic systems, 

including the serotonergic, noradrenergic, and 

dopaminergic systems [11, 29–32]. Our behavioral 

data were consistent with the absence of target 

specificity for DBS antidepressant effects in 

humans and animals. 

Depression, especially major depression, has 

often comorbidities, anxiety being the most 

common [33]. Treatment with SCG DBS of more 

than 100 patients with TRD demonstrated that a 

small number of patients presented increased 

anxiety levels [6, 34]. Here, albeit not statistically 

significant, there was a trend toward an increased 

anxiety in animals receiving vmPFC DBS com-

pared with that of the control group. This was 

similar to the clinical observations. Moreover, 

there was a significant difference between the 

vmPFC DBS and LHb DBS groups. Although 

there is a gap between animal and patient studies, 

there was no comparative clinical studies on the 

efficacy and side effects of LHb and SCG DBS  

in TRD. Our preclinical animal study provides 

information potentially relevant for the clinical 

efficacy of DBS of these two important targets  

in TRD. 

This study had several limitations. First, it 

assessed the antidepressive and antianxiety 

effects of DBS in an acute animal model. Second, 

the different effects of LHb and vmPFC DBS  

on anxiety levels remain unexplained, possibly 

because the anxiety levels might not have been 

adequately measured using the OFT alone. 
 

5 Conclusions 
 

Our primary findings showed no target specificity 

of bilateral high-frequency LHb and vmPFC 

DBS for the antidepressant effects. However, 

compared to vmPFC DBS, LHb DBS might be 

more effective in reducing anxiety-like behaviors. 

The results might constitute a preliminary 

preclinical reference for high-frequency DBS of 

the SCG and LHb in TRD. 
 

Ethical approval  
 

This study protocol was reviewed and approved 

by Animal Use Committee of Peking University 

Health Science Center (Approval No. LA201713). 
 

 

Fig. 4 Example trajectory diagrams of different group rats in the OFT. 
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