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Time is infinite movement in constant motion. We are glad to see that

Neurorestoratology, a new discipline, has grown into a rich field

involving many global researchers in recent years. In this 2019 yearbook

of Neurorestoratology, we introduce the most recent advances and

achievements in this field, including findings on the pathogenesis

of neurological diseases, neurorestorative mechanisms, and clinical 

therapeutic achievements globally. Many patients have benefited from

treatments involving cell therapies, neurostimulation/neuromodulation,

brain–computer interface, neurorestorative surgery or pharmacy, and

many others. Clinical physicians can refer to this yearbook with the latest

knowledge and apply it to clinical practice. 
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1 Introduction 
 

Despite recent developments in clinical, preventive, 

and rehabilitative medicine, when cures are 

unavailable it is necessary to restore damaged 

tissues and functions through what we call 

“restorative medicine” or “medical restoratology”. 

Medical restoratology involves all organs and 

systems of the human body, particularly those of 

the central nervous system (i.e., the brain and spinal 

cord), which are most challenging to restore. Each 

year, to promote the development of neural repair, 

the yearbooks of Neurostoratology have been 

serially compiled since 2016. In this 2019 yearbook, 

we collect and introduce the global achievements 

of this field for the entire year. These include 

knowledge of the pathogenesis of neurological 

diseases, explorations of neurorestorative me-

chanisms, and clinical therapeutic exploration 

with current achievements and progress. 

 

2 New findings on disease pathogenesis or 

nervous system degeneration 
 

The pathogeneses and aging mechanisms of 

diseases are key to developing etiological 

treatments. Zada et al. [1] found that sleep could 

increase chromosome dynamics, which would 

lower the number of DNA double-strand breaks 

accumulated during wakefulness; hence less or 

poor sleep might favor the pathogenesis of several 

neurodegenerative diseases. Moreno-Jiménez et al. 

[2] reported that the number and maturation of 

immature neurons in dentate gyrus progressively 

declined in advanced Alzheimer’s disease (AD), 

which was a potentially relevant pathogenesis 

underlying memory deficit. Higher numbers of 

neuroblasts, on the other hand, were associated 

with higher cognitive performance [3]. Mathys 

et al. [4] showed that perturbed myelination- 

related processes in multiple cell types played a 

key role in the pathogenesis of AD. Ising et al. [5] 

discovered that inflammatory activation of 

microglia and NLRP3 was the pathogenesis of 

tauopathies. 

 

3 New mechanisms for neurorestorative 

therapy 
 

This year, many studies have shown novel and 

interesting mechanisms for neural repair. A study 

by Dominy et al. [6] revealed that a new 

neurorestorative mechanism for AD could reduce 

the bacterial load of established Porphyromonas 

gingivalis brain infection (which is possibly one of 

the pathogeneses for AD), block Aβ1–42 production, 

reduce neuroinflammation, and rescue neurons 

in the hippocampus through gingipain inhibitors. 

Lourenco et al. [7] found that boosting brain 

levels of fibronectin type Ⅲ domain-containing 

protein 5 (FNDC5)/irisin through regular exercise 

could improve synaptic plasticity and memory, 

which might be a potential neurorestorative 

mechanism for AD patients. Vrselja et al. [8] 

demonstrated a new neurorestorative mechanism 

to restore microcirculation in intact pig brains 

after a prolonged post-mortem interval with 

preservation of the cytoarchitecture, attenuation 

of cell death, restoration of vascular dilatory 

and glial inflammatory responses, spontaneous 

synaptic activity, and active cerebral metabolism 

in the absence of global electrocorticographic 

activity. Anumanchipalli et al. [9] designed a 

decoder synthesizing speech from cortical activity 

an innovative neurorestorative mechanism to 

restore spoken communication. Moda-Sava et al. 

[10] found that depression-related behavior with 

targeted, branch-specific elimination of postsynaptic 

dendritic spines on the prefrontal neurons could 

be restored by antidepressant-dose ketamine 

through selectively rescuing eliminated spines. 

Heckmann et al. [11] reported that LC3-associated 

endocytosis in microglia could protect from 

neurodegenerative pathologies resulting from 
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β-amyloid deposition (such as AD). Fultz et al. 

[12] discovered that the sleeping brain exhibited 

waves of cerebrospinal fluid (CSF) flow on a 

macroscopic scale and that these CSF dynamics 

were interlinked with neural and hemodynamic 

rhythms. They hypothesized that CSF clears 

metabolic waste products from the brain during 

slow waves, accompanied by neural activity and 

contributed to memory consolidation. A study 

by von Wild et al. [13] replicated central nervous 

system (CNS)-peripheral nervous system (PNS) 

graft-induced neuroregeneration of denervated 

skeletal muscle in spinal cord injury. 

 

4 Achievements and progress in clinical 

neurorestorative therapies 

4.1 Cell therapy 

Cell transplantation is a hot topic in neurore-

storatology, highlighted by many new research 

findings this year. Levy et al. [14] reported that 

intravenous allogeneic mesenchymal stem cells 

[i.e., mesenchymal stromal cells (MSCs)] improved 

the neurological behaviors of patients with chronic 

stroke and substantial functional deficits. Zhang 

et al. [15] showed that the intracerebral injection 

of neural stem cells improved the neurological 

functions of patients with paralysis after an 

ischemic stroke. Guo et al. [16] reported that 

transplanting olfactory ensheathing cells in a 

patient with cerebral infarction sequela could 

improve his quality of life. Savitz et al. [17] con-

ducted a randomized, sham-controlled, parallel- 

group, multicenter clinical trial for patients with 

subacute ischemic strokes by intra-arterially 

delivering autologous bone marrow-derived 

ALD-401; but reported no differences between 

cell therapy and the control. Brunet et al. [18] 

reported a patient who had received an intravenous 

infusion of bone marrow-derived allogeneic 

mesenchymal stem cells and had a better recovery 

than anticipated on day 3 post-bleed. Hammadi  

and Alhimyari [19] reported that autologous bone 

marrow-derived mononuclear cells through 

intra-arterial and intravenous injections resulted 

in improvements in the quality of life of patients 

with an ischemic stroke. Furthermore, Vahidy  

et al. [20] reported that the intravenous fusion  

of bone marrow mononuclear cells for acute 

ischemic stroke was a safe and feasible method, 

but there was no significant difference between 

the cell treatment and the control. 

Vaquero et al. [21] found that intrathecal tran-

splantation of autologous stromal cells increased 

cerebral glucose metabolism and improved pre-

vious symptoms in patients with Alzheimer’s 

dementia. 

Levi et al. [22] conducted a single-blind, 

randomized study of human neural stem cell 

transplantation in patients with chronic C5–C7 

tetraplegia. However, their experiment did not 

reach the required clinical efficacy threshold and 

this study was terminated early. Bydon et al. [23] 

reported that intrathecal injections of adipose 

tissue-derived mesenchymal stem cells (actually 

MSCs) to a patient with incomplete spinal cord 

injury showed motor and sensory improvement. 

Phedy et al. [24] reported that transplanting bone 

marrow-derived mesenchymal stem cells in a 

chronic spinal cord injury (SCI) patient through 

direct parenchymal and intravenous injection 

improved his motor function. 

Moore et al. [25] reported that transplanting 

autologous hematopoietic stem cells in patients 

with active relapsing-remitting multiple sclerosis 

and secondary progressive multiple sclerosis 

could achieve significant clinical improvement 

outcomes. Mariottini et al. [26] reported that 

autologous hematopoietic stem cell transplanta-

tion following natalizumab discontinuation in 

aggressive multiple sclerosis was safe and 

efficient. 
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Boruczkowski and Zdolińska-Malinowska 

[27] reported that transplanting allogeneic me-

senchymal stem cells obtained from Wharton’s 

jelly of umbilical cords to children with cerebral 

palsy improved their daily quality of life. They 

were also effective in patients with spina bifida: 

improving their motor functions, micturition/ 

defecation control, cognitive functions, and quality 

of life [28]. 

Pan et al. [29] reported that intrathecal injections 

of allogeneic bone marrow-derived MSCs in 

neurological patients were safe, feasible, and 

showed promising results. 

Goudie et al. [30] found that transplantation 

of hematopoietic stem cells did not prevent 

neurological deterioration in infants with Farber 

disease. However, Chen et al. [31] reported that 

allogeneic hematopoietic stem cell transplantation 

for X-linked adrenoleukodystrophy was safe, 

feasible and showed beneficial effects in preventing 

a worsening of the disease in some patients. 

Riordan et al. [32] reported that the admini-

stration of mesenchymal stem cells derived from 

umbilical cord tissue was safe in children with 

autism spectrum disorders, with a few patients 

showing signals of efficacy. 

4.2 Neurostimulation/neuromodulation and 

the brain–computer interface (BCI) 

Neuromodulation is a promising field of medical 

engineering. Any new clinical application of the 

BCI will attract the attention of physicians related 

to neurorestoratology in the whole world. This 

is an important exploration for the treatment of 

human hopeless brain and spinal cord diseases 

and damage. Blok et al. [33] reported that clinical 

improvements could be achieved in patients 

with an overactive bladder, using the sacral 

neuromodulation system in a prospective, multi-

center study. McCrery et al. [34] reported that 

sacral neuromodulation was a safe and effective 

approach to improve urinary urgency incontinence 

symptoms in a majority of patients with urinary 

dysfunction and fecal incontinence, when con-

servative treatlents failed. Yeh et al. [35] reported 

a linear correlation between the amplitude of 

dorsal genital nerve stimulation (GNS) ranging 

from 1 to 4 times the threshold and bladder 

capacity gain stimulation in acute SCI patients 

with neurogenic detrusor overactivity. Bourbeau 

et al. [36] also found that short term at home 

GNS could reduce urinary incontinence and help 

subjects to achieve adequate bladder control. 

Benabid et al. [37] reported that up to eight degrees 

of freedom of a four-limb neuroprosthetic 

exoskeleton could be simultaneously controlled 

by a complete brain–machine interface system 

using continuous, online epidural electro-

corticographic signals to decode brain activity in 

a tetraplegic patient. Bockbrader et al. [38] reported 

that using an implanted BCI with forearm 

transcutaneous muscle stimulation allowed skillful 

grasp coordination of daily use in a tetraplegic 

individual . 

Seier et al. [39] found that alternating stimulation 

patterns maintained better tremor control com-

pared to constant stimulation in patients with 

tremors, throught the deep brain stimulation (DBS) 

of the ventral intermediate nucleus. Selfslagh  

et al. [40] reported that a surface functional 

electrical stimulation-generated step movement 

of the lower-limbs was triggered by cue-based 

decoding of cortical motor commands using a 

brain–machine interface, allowing patients with 

chronic paraplegia to walk safely and showing 

some partial neurological recovery. Fan et al. [41] 

reported that both the subthalamic nucleus and 

the globus pallidus internus had beneficial effects 

on reducing levodopa-induced dyskinesia; and 

globus pallidus internus–DBS provided greater 

anti-dyskinetic effects. 

Krauth et al. [42] found that electroen-

cephalographic (EEG)-electromyography (EMG) 

coherence could serve as a biomarker for motor 
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recovery and provide information about the 

cortical regions in patients with an ischemic 

stroke. 

Yang et al. [43] reported that transcranial direct 

current stimulation for 14 consecutive days could 

significantly decrease seizure frequency in patients 

with refractory focal epilepsy. Elder et al. [44] 

showed that patients with treatment-resistant 

multifocal epilepsy had ≥ 50% reduction in de-

bilitating seizures compared to the pretreatment 

baseline after they were implanted with a DBS 

system in the unilateral anterior nucleus of the 

thalamus. 

4.3 Neurorestorative surgery 

Several key articles on reparative surgeries have 

been published this year. Yu et al. [45] reported 

that contralateral hemi-5th-lumbar nerve transfer 

in two incomplete SCI patients with unilateral 

lower limb dysfunction was safe, and allowed 

patients to recover independent walking ability 

with crutches. van Zyl et al. [46] reported that 

nerve transfers could lead to significant functional 

improvement in patients with chronic cervical 

SCIs. Khalifeh et al. [47] found that transfers 

for the reinnervation of arm, hand, and finger 

extensors showed a more consistent and meaning-

ful return in strength and function in patients 

with cervical SCI and tetraplegia. Even in late 

phase (> 4 years) high cervical SCI, patients still 

achieved beneficial outcomes from nerve transfers 

for motor and sensory restoration [48]. Ding et al. 

[49] reported that long-term follow-up studies of 

nerve segment insert grafting showed significant 

hand function recovery in quadriplegic patients 

with chronic incomplete lower cervical SCI. 

Qiu et al. [50] reported that the contralateral 

lumbar to sacral nerve transfer in two stroke 

patients with hemiplegia resulted in significant 

improvements in ambulatory status. Guan et al. 

[51] reported that carrying out contralateral C7 

nerve transfer via the posterior spinal route for 

hemiplegia improved shrug movement 1.5 months 

post-surgery. 

Nerve transfers have been important optional 

therapeutic methods for peripheral injuries, such 

as cranial or brachial plexus nerve injuries. Wu 

et al. [52] reported that superficial radial nerve 

transfer to the dorsal cutaneous branch and the 

superficial branch of the ulnar nerve restored 

sensation in a patient with C7, C8, and T1 roots 

injury. Kannan et al. [53] reported that immediate 

repair showed no significantly different outcomes 

than late repair in extracranial branches of the 

facial nerve, however, their immediate repair 

showed the greatest likelihood of full recovery. 

Zang et al. [54] found that orthopedic operations 

combined with external fixators for deformities 

could help achieve complete correction of said 

deformity, the healing of ulcers, and in the 

restoration of functional activity in patients with 

spinal bifida sequelae.  

4.4 Pharmaceutical neurorestorative therapy 

Drug repair therapy is still a field being extensively 

explored by researchers. Historically, many drugs 

were known to be effective to facilitate nerve 

repair in vitro or in animal studies. However, 

the exploration of drug effectiveness in humans 

remains in its early stages. Excitingly, some 

neurorestorative drugs have been developed in 

the last year. Jost et al. [55], for example, found 

that injecting botulinum toxin to the right muscles 

could improve the symptoms and optimize 

treatment outcomes for different subtypes of 

cervical dystonia. Shieh et al. [56] reported that 

amifampridine phosphate showed significant 

benefits in quantitative myasthenia gravis score 

and subject global impression compared with 

placebo for patients with Lambert–Eaton myas-

thenic syndrome. Ma et al. [57] reported that 

using alteplase between 4.5 and 9 hours after a 



Journal of Neurorestoratology 

Journal of Neurorestoratology 
 
 

6 

stroke onset among patients with ischemic strokes  

and salvageable brain tissue resulted in a higher 

percentage of patients with no or minor neurologic 

deficits compared to placebo. However, a secondary 

ordinal analysis of the score distribution on the 

modified Rankin scale did not show a significant 

difference in functional improvement after 90 days 

between-groups. Howard et al. [58] reported that 

efgartigimod (IgG1 Fc-fragment, a natural ligand 

of the neonatal Fc receptor) was safe, well to-

lerated, and showed reduced levels of pathogenic 

IgG autoantibodies in patients with generalized 

myasthenia gravis. Shevela et al. [59] showed 

that the intranasal delivery of M2 macrophages 

soluble products was safe, and that it reduced 

neuropsychological deficits in patients with 

chronic cerebrovascular disease. 

4.5 Bioengineering and tissue engineering 

therapy 

Bioengineering and tissue engineering are at  

the frontier of neural repair. Christine et al. [60] 

reported that magnetic resonance imaging (MRI)- 

guided putaminal L-amino acid decarboxylase 

(AADC) gene therapy was well tolerated, increased 

enzyme expression and showed clinical impro-

vements in patients with Parkinson’s disease 

(PD). Heiss et al. [61] reported that MRI-guided 

putaminal gene therapy in patients with advanced 

PD was safe, well tolerated and increased the 

neurotrophic effect on dopaminergic neurons. 

Tabrizi et al. [62] observed that the intrathecal 

administration of an antisense oligonucleotide 

designed to inhibit HTT messenger RNA (HTTRx) 

in patients with early Huntington’s disease was 

not accompanied by serious adverse events and 

showed dose-dependent reductions in concen-

trations of the mutant huntingtin protein. Kim  

et al. [63] reported that patient-customized 

oligonucleotide therapy (a splice-modulating 

antisense oligonucleotide drug tailored to specific 

patients) for a patient with rare genetic disease 

reduced his seizures without serious adverse 

events. 

4.6 Other relevant findings 

Behrman et al. [64] reported that activity-based 

therapies could significantly improve trunk 

and neuromuscular capacity in children with 

SCI. Xi et al. [65] also reported that respiratory 

muscle endurance training with normocapnic 

hyperpnoea could reduce the incidence of 

respiratory symptoms, improve pulmonary 

function and quality of life, and reduce 

depression in patients with chronic SCI. Even 

in healthy people, both unassisted and robot- 

assisted walking increased gait variability and 

somatosensory brain activity [66]. 

Wei et al. [67] found that acupuncture, com-

bined with neuromuscular joint facilitation, could 

improve upper limb motor function, relieve  

pain, and increase joint mobility in patients with 

hemiplegic shoulder pain. Wang et al. [68] further 

reported that special acupuncture needling can 

effectively reduce post-stroke shoulder pain and 

significantly improve motor function of the upper 

limbs and shoulder-joint, as well as the quality 

of daily life of patients with shoulder pain after 

a stroke. Duan et al. [69] reported that internal 

heat-type acupuncture needle therapy showed 

therapeutic effects in relieving shoulder pain  

and improving upper limb motion function in 

post-stroke patients experiencing shoulder pain. 

When combined with the acupoint injection of 

O3, this therapy has even more beneficial effects 

[70]. Pradines et al. [71] reported that guided 

self-rehabilitation, combined with conventional 

rehabilitation, increased muscle fascicle length, 

extensibility, and ambulation speed more than 

conventional rehabilitation alone in patients with 

chronic hemiparesis. Atan et al. [72] reported 

that body weight-supported treadmill training  
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improved walking distance and balance ability, 

relieved fatigue, and also reduced pain in patients 

with moderate to advanced PD. Edwards et al. 

[73] reported that intensive robot-assisted arm 

training could help in the clinical improvement 

of patients with chronic stroke. 

Liao et al. [74] found that remote ischemic 

conditioning was effective and safe to improve 

cognitive function in patients with subcortical 

ischemic vascular dementia. Tang et al. [75] showed 

that computerized cognitive training significantly 

improved global cognitive function in patients 

with subcortical vascular cognitive impairment. 

Zhao et al. [76] reported that a combination of 

visual feedback balance training and conventional 

rehabilitation treatment could further improve 

gait stability in patients with cerebral small vessel 

disease. Najar et al. [77] also found that midlife 

cognitive and physical activities may play a role 

in preserving cognitive health at an old age or 

reduce the risk of dementia and dementia subtypes. 

Rabin et al. [78] found that engaging in physical 

activity and lowering vascular risk might also 

delay the progression of AD. 

Marusiak et al. [79] reported that an eight- 

week moderate-intensity aerobic interval training 

program improved psychomotor behaviors, 

bimanual motor control, executive function,  

and neurological Parkinsonian symptoms in 

patients with PD. van der Kolk et al. [80] found 

that aerobic exercise at home for patients with 

mild PD severity could even attenuate off-state 

motor signs. 

Gao et al. [81] reported that intensive moxibus-

tion followed by acupuncture can further improve 

symptoms for patients with a frozen shoulder, 

compared to simply acupuncture. Syed and Kamal 

[82] found that video game-based therapy could 

increase self-motivated balance during functional 

tasks further than conventional therapies in 

patients with neurological deficits. 

4.7 Guidelines 

Puyade et al. [83] established guidelines that 

specified the eligibility criteria for transplantation 

of autologous hematopoietic stem cells in patients 

with chronic inflammatory demyelinating 

polyneuropathy, to describe the mobilization and 

the conditioning regimen for the autologous 

hematopoietic cell transplantation (AHCT) pro-

cedure and standardized clinical care follow-up. 

 

5  Summary 
 

Success is the accumulation of daily efforts.   

In 2019, physicians and scientists in neurore-

storatology and its related disciplines have been 

exploring the pathogeneses, restorative me-

chanisms and evidence-based outcomes of medical 

practice using different restorative approaches, 

achieving promising results. Furthermore, these 

developed treatment have helped patients with 

neurological diseases by improving their quality 

of life. 
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