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Distributed Flow Shop Scheduling with Sequence-Dependent Setup
Times Using an Improved Iterated Greedy Algorithm

Xue Han, Yuyan Han*, Qingda Chen, Junqing Li, Hongyan Sang,
Yiping Liu, Quanke Pan, and Yusuke Nojima

Abstract: To  meet  the  multi-cooperation  production  demand  of  enterprises,  the  distributed  permutation  flow

shop scheduling problem (DPFSP) has become the frontier research in the field of manufacturing systems. In

this  paper,  we investigate  the DPFSP by minimizing a  makespan criterion  under  the constraint  of  sequence-

dependent  setup  times.  To  solve  DPFSPs,  significant  developments  of  some  metaheuristic  algorithms  are

necessary.  In  this  context,  a  simple  and  effective  improved  iterated  greedy  (NIG)  algorithm  is  proposed  to

minimize  makespan  in  DPFSPs.  According  to  the  features  of  DPFSPs,  a  two-stage  local  search  based  on

single job swapping and job block swapping within the key factory is designed in the proposed algorithm. We

compare  the  proposed  algorithm  with  state-of-the-art  algorithms,  including  the  iterative  greedy  algorithm

(2019),  iterative  greedy  proposed  by  Ruiz  and  Pan  (2019),  discrete  differential  evolution  algorithm  (2018),

discrete  artificial  bee  colony  (2018),  and  artificial  chemical  reaction  optimization  (2017).  Simulation  results

show that NIG outperforms the compared algorithms.

Key words: distributed permutation flow shop; iterated greedy; local search; swapping strategy

 

1    Introduction

Under  the  influence  of  globalization,  distributed

manufacturing and scheduling have become a  trend in
the  production  industry  because  many  enterprises  are
gradually  turning  to  multiregional  cooperation.  In  this
context,  enterprises  need  several  production  centers
and must  establish a distributed production model[1, 2].
Thus,  the  distributed  production  process  flow  has
gradually attracted researchers' attention and become a
hotspot for research[2].  The objective of the distributed
permutation flow shop scheduling problem (DPFSP) is
to  assign  some  jobs  to  a  factory  and  to  balance  the
efficiency of all the factories. Thus, the DPFSP consists
of two subproblems: the first is the distribution of jobs
among  factories,  and  the  second  is  the  scheduling
sequence  of  jobs  to  be  processed  on  machines,  which
demonstrates that DPFSP is more complicated than the
traditional performance flow shop scheduling problem.

In  actual  factory  production,  operations  such  as
machine  maintenance  or  blade  replacement  are  often
required  after  a  job  is  processed  on  the  machine,
thereby  creating  extra  time.  These  times  become
sequence-dependent  setup  times  (SDST)  when  their
length  is  related  to  the  job  being processed  and to  the
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previous  job[3].  Therefore,  this  paper  considers  the
SDSTs  and  addresses  the  DPFSP-SDST  to  minimize
makespan.

We  note  that  intelligent  optimization  algorithms
based  on  metaphors  or  inspired  by  nature  have  been
developed to  solve  the  DPFSP,  such  as  the  estimation
of  distribution  algorithm  (EDA)[4],  the  chemical
reaction  optimization  (CRO)  algorithm[5],  the  discrete
artificial  bee  colony  (DABC)  algorithm[6],  and  the
iterative  greedy  (IG)  algorithm[7−9].  These  swarm
intelligence  algorithms  can  provide  multiple  solutions
that are helpful in improving the diversity of solutions.
However,  in  the  exploration  of  a  single  solution
neighborhood, these swarm intelligence algorithms are
slightly less effective than the IG algorithm. Especially
for  flow  shop  scheduling  problems,  few  local
optimums exist. Thus, we can select an algorithm with
good  local  exploitation  ability  to  optimize  the  above
problems.  Compared  with  traditional  swarm
intelligence  algorithms,  the  IG  algorithm  is  a  simple
and  effective  optimization  algorithm  that  has  shown
excellent  local  exploitation  ability  when  solving
scheduling problems[6−9].

The  IG  algorithm  is  characterized  by  ease  of
implementation,  simple  structure,  few parameters,  and
few mathematical  requirements.  It  has two key stages:
destruction and construction,  and local  search,  thereby
making  it  a  parallel  search  framework[1].  Thus,  many
heuristics, metaheuristics, and problem-dependent local
search methods, as well as operators, can be embedded
into  the  above  search  framework  to  further  enhance
exploration and exploitation. Since the proposal of the
IG  algorithm  by  Ruben  and  Thomas,  it  has  been
continuously  expanded and improved for  solving flow
shop  scheduling  problems[1].  From  Ref.  [10],  the
simulation  experimental  results  verify  that  the  IG
algorithm  is  appropriate  and  competitive  for  solving
discrete  optimization  problems.  To  the  best  of  our
knowledge,  the  IG  algorithm  has  not  yet  been  well
studied  up  to  the  present  for  the  DPFSP-SDST.  With
the  above  motivations,  we  propose  an  improved  IG
algorithm to solve the DPFSP-SDST.

We  know  that  the  DPFSP  has  two  key  issues  to  be
solved:  how  to  allocate  jobs  to  appropriate  factories
and  how  to  generate  the  scheduling  sequence  of
operations  on  machines  with  minimal  makespan.  To
tackle  these  issues  effectively,  our  contribution  to  the
algorithm is twofold.

The  process  of  allocating  jobs  to  appropriate

factories  is  often  finished  after  the  initialization
solution  is  generated.  In  this  paper,  an  allocation
strategy  based  on  the  idle  time  of  a  factory  and  an
independent  insertion operator  is  adopted according to
the initialization scheduling sequence.

Based  on  the  distributed  feature  of  DPFSP-SDST,  a
two-stage  local  search  strategy  based  on  a  single  job
exchange  and  a  job  block  swapping  is  proposed  to
disturb the current solution within the key factory. This
two-stage  local  search  has  low  computational
complexity, and it has more iterations and opportunities
to  improve  the  quality  of  the  solution  than  the
algorithms based on insertion operators.

This paper is organized as follows: Section 2 reviews
some  related  references.  Section  3  introduces  the
mathematical  model  of  DPFSP-SDST.  Section  4
introduces  the  IG  algorithm  and  its  improvement.
Section  5  provides  experimental  results  and  analysis.
The  last  section  summarizes  the  strengths  of  our
algorithms  and  gives  some  perspectives  for  future
works. 

2    Literature Review

The DPFSP-SDST is a multifactory production model;
thus,  it  has  significant  applications  in  real-world
problems.  Therefore,  this  problem  has  attracted  the
attention of many researchers. In this section, we have
summarized some single-  and multi-objective DPFSPs
and the IG algorithm in recent years.

The  change  in  production  from  a  single  factory  to
multiple  factories  is  to  reduce  processing  times  while
increasing  processing  efficiency  or  reducing  energy
consumption. Thus, some significant research has been
conducted  on  the  DPFSPs  with  the  makespan
minimization,  and  many  improvements  of  the
algorithms  have  been  made,  such  as  an  efficient
EDA[4],  a  scattered  search  (SS)  algorithm  containing
restart  and  local  search  strategies[11],  and  a  CRO
algorithm[5].  Recently,  for  the  same  criterion,  Zhao  et
al.[12] integrated  two  heuristics  and  a  stochastic  policy
to  generate  an  initial  solution  and  proposed  the
ensemble  discrete  differential  evolution  algorithm.
Meng et al.[13] studied the three metaheuristics, namely,
variable  neighborhood  descent,  artificial  bee  colony,
and  IG.  Li  et  al.[14] employed  an  improved  DABC
algorithm,  and  the  experimental  results  show  that  the
performance  of  the  DABC  is  better  than  that  of  the
genetic algorithm and IG algorithm.

Except  for  the  makespan,  the  objective  of  the  total
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flow  time  is  also  important.  Thus,  many  studies  have
been  developed  for  DPFSPs  with  the  minimization  of
the  total  flow  time.  Fernandez-Viagas  et  al.[15]

proposed  some constructive  heuristics  and  an  iterative
improvement  algorithm  to  minimize  the  total  flow
time. Next, Pan et al.[16] designed the three constructive
heuristics  and four metaheuristics  algorithms based on
a  high-performance  framework  of  a  discrete  artificial
swarm, SS, iterative local search, and IG. Recently, for
the  same  objective,  Zhang  et  al.[17] proposed  an
innovative  3D  matrix-based  distribution-based
estimation algorithm, and Song and Lin[18] proposed a
genetic program-based hyper-heuristic algorithm.

In  various  real-world  applications,  the  DPFSPs
optimize  not  only  one  objective  but  also  several
objectives.  Deng and Wang[19] proposed a competitive
modal  algorithm to  optimize  the  two objectives  of  the
makespan  and  total  tardiness  criteria.  Wang  et  al.[20]

employed  a  multiobjective  whale  swarm  algorithm
(MOWSA),  in  which  a  problem-specific  coding
scheme,  crossover,  and  variational  operations,  as  well
as  efficient  local  search,  are  proposed  to  solve
multiobjective  DPFSP-SDST.  Furthermore,  Wang  et
al.[21] adopted  the  above-improved  MOWSA  to  solve
the energy-efficient  DPFSP.  Chen et  al.[22] proposed a
collaborative  optimization  algorithm  using  attributes
and  some  synergistic  mechanisms  for  reducing
makespan and total energy consumption.

In  production,  after  a  machine  has  finished
machining a job, it often takes a certain amount of time
for  operations,  such  as  tool  changes  and  machine
maintenance.  When  these  operations  are  associated
with two jobs before and after machining on the same
machine, this time is referred to as SDST. SDST allows
for  a  more  precise  consideration  of  setup  time  and  is
more coincident with the actual production activities in
most  factories.  Therefore,  the  study  of  SDST  is  more
relevant than the common fixed lead time. Most of the
early studies on SDST were conducted on specific real-
world  problems.  For  example,  Parthasarathy  and
Rajendran[3] studied the problem of a flow shop of the
production  of  drill  bits.  Later,  Mirabi[23] proposed  an
improved  ant  colony  optimization  algorithm  to  solve
the  permutation  flow  shop  scheduling  problem  with
SDST/PFSP.  For  the  same  problem,  an  improved
neighborhood-based  heuristic[24],  an  enhanced
migrating  birds  optimization  algorithm[25],  and  an
effective  DABC algorithm[6] are  proposed  to  optimize
the makespan of DPFSP-SDST. In addition, for SDST-

PFSP  with  the  total  process  time,  Nagano  et  al.[26]

applied  a  new  construction  heuristic  called  QUARTS
to solve the above problem.

In  the  existing  literature,  some researchers  proposed
many  excellent  heuristic  and  metaheuristic  algorithms
for distributed flow shops with different constraints[27].
Li  et  al.[28] proposed  a  DABC  algorithm  to  solve  the
distributed  heterogeneous  no-wait  flow  shop
scheduling  problem.  Next,  considering  the  distributed
heterogeneous  hybrid  flow  shop  scheduling  problem
with  unrelated  parallel  machines  and  the  SDST,  Li  et
al.[29] studied  a  machine  position-based  mathematical
model  and  designed  an  improved  artificial  bee  colony
algorithm.  For  the  distributed  assembly  flow  shop
scheduling  problem,  Zhao  et  al.[30] proposed  a
cooperative  water  wave  optimization  algorithm  to
minimize  the  maximum  assembly  completion  time.
Next,  based  on  the  features  of  the  same  problem
mentioned  above,  Shao  et  al.[31] considered  a
constructive  heuristic  based  on  a  new assignment  rule
of jobs and a product-based insertion procedure.

Among  the  above  algorithms,  the  IG  algorithm  has
shown good performance in solving PFSP[10].  With its
simplicity,  ease  of  operation,  and  superiority  over
many other metaphor-based algorithms[10, 32, 33], IG has
attracted  great  attention  from  researchers  for  use  in
solving various PFSP problems. IG was first  proposed
to  solve  DPFSP  by  Naderi  and  Ruiz[1],  and  the
experimental  results  show  its  great  performance.  The
use of insertion operations in the local search phase in
their work leads to an improvement in the quality of the
solution.  Subsequently,  scholars  and  producers  have
spent  many  efforts  to  modify  the  IG  algorithms  and
achieve  significant  improvements  in  their
performance[34−37].  More  recently,  Fernandez-Viagas
and  Framinan[38] compared  the  existing  IG  algorithms
and  their  variants  to  derive  a  new  best-in-class
algorithm.  Mao  et  al.[39] improved  the  initial  phase  of
the IG algorithm and the damage reconstruction phase.
Instead  of  applying  a  simple  simulated  annealing
criterion  to  the  IG  algorithm[40],  Lin  et  al.[34] used  an
acceptance  criterion  with  a  settling  temperature  value
and included the number of elements to be removed in
the  destruction  step  as  a  variable.  Ruben  et  al.[7]

employed  an  improved  IG  algorithm  to  optimize  the
makespan  of  DPFSP.  Jing  et  al.[41] adopted  an
improved  IG  algorithm  to  solve  the  DPFSP  with
windows.  Huang  et  al.[8] combined  the  proposed  six
different  operators  with  the  IG  algorithm  to  greatly
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improve  the  performance  of  the  IG  algorithm  and
applied two different local searches based on insertion
operations to improve the quality of the solution.

In summary, research on the above DPFSP-SDSTs is
relatively  few.  In  addition,  although  IG  has  shown
good performance in solving DPFSP, for most existing
IG  algorithms,  the  local  search  based  on  insertion
operator  is  often  adopted.  We  know  that  the  insertion
operations  require  more  running  time  and  will  lose
opportunities  to  generate  promising  solutions  by
several  iterations.  Thus,  efforts  are  needed  to  reduce
the time complexity of the IG algorithm. In this paper,
a  two-stage  local  search  strategy  is  designed  and
integrated into the IG algorithm. 

3    SDST-DPFSP Problem

For  example,  the  parallelization  of  cutoff  pair
interactions is mature on CPUs and typically employs a
voxel-based method.

n f
m

Cmax

DPFSP-SDST  has  been  described  as  follows:  There
are  jobs,  which  need  to  be  processed  in  identical
factories,  and  each  factory  has  machines.  This
problem has the following constraints: (1) Each job can
be processed in any factory. (2) The job is processed in
the  order  from  the  first  machine  to  the  last  machine,
and  the  factory  cannot  be  changed  during  processing.
(3) Each machine can process only one job at any time.
(4) Only one job can be processed in the same factory.
(5)  All  operations  are  independent,  and  all  factories
start  processing  from  0  moment  when  processing  the
job.  The  purpose  of  DPFSP-SDST  in  this  paper  is  to
assign  jobs  reasonably  to  the  factory  and  find  a  job
sequence  to  minimize  makespan  ( ).  The
mathematical  model  of  the  problem  and  its  notations
are described as follows:

Notations:
f : The number of factories.
m: The number of machines in each factory.
n: The number of jobs that need to be processed.
J = {J1, J2, ..., Jn} n: The set of  jobs to be processed.
M = {M1,M2, ...,Mm} m

Mi

Mi ∈ M

: The set of  machines, where is
 machine used to complete the q-th process of jobs,

.
F =
{
F1,F2, ...,F f

}
f

Fl F Fl ∈ F
:  The  set  of  parallel  factories,

where  is the l-th factory from set , .
oi, j J j Mi: The operation of job  on machine .
pi, j J j Mi: The processing time of job  on machine .
si, j′, j J j Mi

Mi

: The setup time of job  on machine , when
the  job  is  the  first  job  processed  on  machine ,  then

J′ = J .
S Ti, j oi, j: The start time of .
CTi, j J j Mi: The completion time of job  on machine .
MS Tl,i,q Fl

Mi

:  The start  time of  the q-th job of  factory 
on machine .

MCTl,i,q

Fl Mi

:  The  completion  time  of  the q -th  job  of
factory  on machine .

Cmax(πF f )
F f

: The completion time of the jobs processed
in factory .

G: A fairly large positive integer.
Cmax: The completion time of all the jobs.
Decision variables:
x j,i,l,q J j

Mi Fl

:  When  job  is  the q -th  job  processed  on
machine  in  factory ,  the  value  of  the  decision
variable is 1; otherwise, it is 0.

yi,l J j Fl: When job  is processed in factory , the value
of the decision variable is 1; otherwise, it is 0.

Objective:
 

MinCmax = max f
i=1

{
Cmax(πF1 ),Cmax(πF2 ), ...,Cmax(πF f )

}
(1)

Subject to
 

y j,l =

n∑
q=1

x j,i,l,q,∀J j ∈ J,∀Mi ∈ M,∀Fl ∈ F (2)

 

n∑
j=1

x j,i,l,q ⩽ 1,∀Fl ∈ F,∀Mi ∈ M,∀q ∈ {1,2, ...,n} (3)

 

n∑
j=1

x j,i,l,q ⩾
n∑

j′=1

x j′,i,l,q+1,∀Fl ∈ F,∀Mi ∈ M,

∀q ∈ {1,2, ...,n−1} (4)
 

S Ti+1, j ⩾CTi, j,∀J j ∈ J,∀Mi ∈ {1,2, ...,m−1} (5)
 

MCTl,i,q = MS Tl,i,q+
∑n

j=1
pi, jx j,i,l,q,∀Mi ∈ M,

∀F1 ∈ F,∀q ∈ {1,2, ...,n}
(6)

 

MS Tl,i,q+1 =MCTl,i,q,∀Mi ∈M,∀Fl ∈ F,∀q ∈ {1,2, ...,n−1}
(7)

 

MS Tl,s,q+1+G(1− x j,i,l,q) ⩾ MCTl,i,q+
∑n

j′=1
si, j′, jx j′,i,l,q,

∀Mi ∈ M,∀Fl ∈ F,∀q ∈ {1,2, ...,n−1}
(8)

 

MS Tl,i,1+G(1− x j,i,1,1) ⩾ si, j, j,∀J j ∈ J,∀Mi ∈ M,∀Fl ∈ F
(9)

 

CTi, j = S Ti, j+Pi, j,∀J j ∈ J,∀Mi ∈ M (10)
 

MS Tl,i,q ⩾ 0,∀Mi ∈ M,∀Fl ∈ F,∀q ∈ {1,2, ...,n} (11)
 

S Ti, j ⩾ 0,∀J j ∈ J,∀Mi ∈ M (12)
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Equation  (1)  is  the  objective  function  to  be
minimized.  Constraint  (2)  is  that  each  job  can  be
processed on only  one machine  in  a  factory  at  a  time,
and  Constraint  (3)  means  that  each  machine  can
process only one job at a time. Constraint (4) states that
the  processing  of  operations  on  the  machine  can  be
performed  only  sequentially,  and  the  processing  time
cannot  be  overlapped.  Constraint  (5)  shows  that  the
processing  sequence  of  the  job  cannot  be  changed.
Constraint  (6)  describes  the  start  time  and  completion
time of a job processing. Constraint (7) represents that
the  start  time  must  be  equal  or  greater  than  the
completion  time  of  two  adjacent  jobs  on  a  certain
machine.  Constraint  (8)  describes  the  constraints
between the start time and completion time of the job,
including preparation time. Constraint  (9) refers to the
situation  when  the  job  is  first  processed  on  the
machine.  In  Constraint  (10),  the  completion  time  of  a
job is the sum of the start time and the processing time
of  the  job.  Constraints  (11)  and  (12)  indicate  that  the
start time of each machine and each job is not less than
0, respectively.

The  following  example  illustrates  a  scheduling  case

x2,1,1,1 = 1 x1,2,1,1 = 1
x5,3,1,1 = 1 x2,1,1,2 = 1 x1,2,1,2 = 1 x5,3,1,2 = 1 x4,1,2,1 = 1
x3,2,2,1 = 1 x6,3,2,1 = 1 x4,1,2,2 = 1 x3,2,2,2 = 1 x6,3,2,2 = 1
y2,1 = 1 x2,1,1,1 = 1 y5,1 = 1 y4,2 = 1 y3,2 = 1 y6,1 = 1

considered  in  DPFSP-SDST.  Suppose  that  there  is  a
scheduling  sequence  with  six  jobs,  two  factories,  and
two machines per factory. The processing time of the 6
jobs on two machines is (4, 3, 1, 3, 6, 8) and (3, 7, 2, 1,
9,  4),  respectively.  The  setup  times  of  the  six  jobs  on
two  machines  with  different  sequences  are  shown  in
Table 1. The jobs assigned to the first factory are 2, 1,
5, and the jobs assigned to the second factory are 4, 3,
6.  For  decision  variables, , ,

, , , , ,
, , , , ,

, , , , , and .
The  remaining  decision  variables  are  0. Table 1
presents the setup time for jobs on different machines.

Figure 1 gives  the  Gantt  chart  of  the  scheduling
sequence  (2,  4,  1,  3,  6,  5)  on  the  two  machines  and
factories.  In  this  study,  we  consider  minimizing  the
maximum  makespan  of  scheduling.  From  this  Gantt
chart, we see that the value of makespan is 38 units of
the time given by the maximum completion time of the
last job on the second machine in the two factories. It is
easy  to  understand  that  if  the  number  of  factories  is
equal to one, then the makespan must be larger than 38.

 

s(i, j′, j) M1 M2Table 1    Sequence-dependent setup times  of jobs on machines  and 

J′j
M1 M2

J1 J2 J3 J4 J5 J6 J1 J2 J3 J4 J5 J6

J′1 4 3 6 1 2 4 1 4 6 7 3 2
J′2 7 8 2 7 5 1 5 2 8 1 7 8
J′3 4 5 8 1 3 7 2 3 2 4 6 3
J′4 1 2 6 9 4 9 9 8 4 2 1 3
J′5 3 7 5 4 8 6 6 7 1 5 2 3
J′6 3 6 1 2 6 4 4 5 3 1 2 6

 

 

Processing time

Setup time

Idle time

M2 4

4 4 3 3 6 6
2 12

4 3 3 6 6
13 17 19 21 26 34

129 18 19 26 34

102 17 22 25

108 17 21 23 29
2 2 1 1 5

2 2 11 5 5

5
28 29 38

38
M1

M2

F2

F1
M1

Time (s)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

 
Fig. 1    Gantt chart for a solution to the example problem.
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