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Fig. 6 The transition curves of friction coefficient and micro- 
displacement of the carbon films: (a) e-NCF, (b) i-CF, and (c) 
i/e-NCF. 

To understand the frictional behavior of 
nanostructured carbon films, Fig. 7 shows the TEM 
images of the low frictional wear tracks of the  
e-NCF and i-CF, respectively. In Fig. 7(a), the wear  

 

Fig. 7 TEM images of low frictional wear tracks of (a) e-NCF, 
and (b) i-CF. 

track of e-NCF slightly changed into a less organized 
nanostructure than the originally deposited surface, 
it remains nanocrystalline structure. Comparing 
Fig. 7(b) with Fig. 3(b), it is clear that the amorphous 
structure of i-CF changed into a nanocrystalline 
structure containing graphene sheets stacks.  

Concerning the low friction behavior of amorphous 
carbon films, there are two widely accepted 
explanations which are the formation of a transfer 
film on the counter sliding surface and the 
graphitization of the transfer film, and those were 
studied in our earlier research [12, 19]. The TEM 
image of the wear track provided direct evidence of 
the structural transformation from amorphous to 
graphene sheets embedded in the structure during 
cyclic friction, which we call “graphenization”. The 
graphenization process can be one of the reasons 
why the friction coefficient decreased. 

By comparing the TEM images of the e-NCF, i-CF, 
and their wear tracks, we found that the wear track 
of amorphous carbon film in the low friction stage 
has the similar structure with the e-NCF structure. 
From the tribotest result of i-CF, it can be seen that 
before the low friction stage, there is a high friction 
stage and a gradually-decreasing stage that took 
about 1000 frictional cycles, as shown in Fig. 6(b). This 
stage is not preferred when we consider the carbon 
films as a lubricant coating. Then it is necessary to 
shorten or even avoid the high friction stage. Since 
the nanostructure in e-NCF is similar with the low 
friction stage carbon, it may make the film reach low 
friction at early stage. In order to achieve low friction 
at the beginning of the sliding, the ion–electron 
hybrid irradiated film was prepared. As shown in 
Fig. 3(c), the basic structure of the i/e-NCF obtained by  
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ion irradiation is amorphous, whereas the top layer 
nanostructure was modified from amorphous to 
graphene sheets embedded in the structure by 
electron irradiation. Figure 6(c) shows that the critical 
cycles for achieving a low friction coefficient is 200 
cycles and the wear life is longer than 2000 cycles 
with a low friction coefficient of 0.079. 

4 Discussion 

The frictional behaviors of nanostructured carbon 
films were obtained by using a pin-on-disk tribometer 
with a nanoprobe displacement sensor. It should be 
noted that the stabilized low friction coefficient of 
e-NCF (0.137) is nearly twice higher than that of i-CF 
(0.075) and i/e-NCF (0.079). Concerning the mechanism, 
we consider that the original surface roughness may 
play an important role. It can be seen in Fig. 5(a) that 
the roughness of e-NCF is 13.42 nm, whereas in the 
cases of i-CF and i/e-NCF, the value is 0.087 nm and 
0.080 nm, respectively. The big difference in surface 
roughness may affect the friction coefficient of the 
nanostructured carbon films, the values of the low 
friction coefficient of i-CF and i/e-NCF with similar 
surface roughness are nearly the same, and the 
“graphenization” of NCFs during friction affects the 
friction coefficient decreasing at the early stage. 

On the other hand, the frictional transition curves 
also showed that the wear life of e-NCF (475 cycles) 
is shorter than that of i-CF and i/e-NCF (>2000 cycles). 
The wear life of carbon films depends on the interface 
strength. In the e-NCFs, during the film growth, the 
electrons exchange energy with the valence electrons 
of the carbon atoms through inelastic scattering to 
modify the bonding states and they cannot change 
the atom position during deposition. The film growth 
rate along the thickness direction (vertical growth) is 
quicker than that along the horizontal direction, and 
the graphene sheets structure may grow freely in one 
direction with low bonding energy. As a result, the 
surface morphology in Fig. 5(a) shows prominences, 
and the graphene sheets stacks randomly distributed 
in the plan view (see Fig. 3(a)), resulting in a much 
weaker interface strength between the e-NCF and the 
substrate due to their lattice-mismatch. In contrast, 

when the films are deposited under ion irradiation, 
the weak bonds between carbon atoms are broken by 
the energetic argon ions and then the carbon atoms 
can spread in the horizontal direction, leading to a 
much stronger bonding state and a smoother surface 
(see Fig. 5(b)). Furthermore, in the case of i-CF, the 
interdiffusion takes place at the initial stage of film 
growth under ion irradiation, which may form an 
interlayer containing Si–Si, C–Si, and C–C bonds. The 
interlayer plays an important role in increasing the 
bonding strength between the film and the substrate 
[18, 20–21]. In i/e-NCF, only the nanostructure of the 
top layer was modified, the structure near the 
interface remains the i-CF structure, which results in 
a stronger interfacial strength. Therefore, i-CF and 
i/e-NCF with stronger bonding interface exhibited 
longer wear life. The interface bonding strength of 
e-NCF still needs to be improved for further study. 

As discussed above, in order to control the frictional 
behavior of NCFs, the merits of smooth surface for 
low friction coefficient, high interface strength for 
long wear life, and graphene sheets embedded in the 
nanostructure for achieving low friction coefficient 
quickly were integrated with the ion–electron hybrid 
irradiation method. The i/e-NCFs have not only 
excellent frictional properties, but also good electric 
conductivity [11] and magnetic behavior [22]. As a 
result, the i/e-NCFs can find wide use in applications 
with outstanding tribological, electrical and megnetical 
properties. 

Finally, in this paper, the nanoprobe displacement 
sensor was installed on a pin-on-disk tribometer, which 
is used to in-situ monitor the microdisplacement of 
the SiC ball when sliding against the carbon films  
for understanding the effect of friction-induced 
microdisplacement on the friction mechanism. By 
using the nanoprobe displacement sensor, except 
that the microdisplacement of the SiC ball during 
friction is obtained, and the oscillation amplitude   
of the microdisplacement also can be quantified (as 
shown by the small inserted blocks in Fig. 6), which 
represents the friction induced oscillation of the   
pin. For example, the oscillation amplitude of e-NCF 
is larger than those of i-CF and i/e-NCF, and this 
phenomenon may be caused by the surface roughness. 
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Thus, the surface roughness of e-NCF is higher than 
that of i-CF and i/e-NCF, and the contact, the friction, 
the mechanical interlocking, and the peeling of large 
asperities will generate larger amplitude friction 
oscillation. When the NCFs are used in the precision 
instruments, the friction-induced microdisplacement 
and its oscillation amplitude at the contact interface 
play an important role for effecting precise positioning, 
therefore, in-situ tracking the friction vibration is 
necessary. 

5 Conclusions 

A new path for preparing NCFs for controlling friction 
coefficient was proposed by using the method of 
ECR plasma sputtering combined with ion–electron 
hybrid irradiation manufacturing. The pin-on-disk 
tribometer with a nanoprobe displacement sensor for 
measuring the frictional behavior of the film was 
developed for better understanding of the friction 
mechanism of the NCFs. The transition curves of the 
friction coefficient and the microdisplacement of the 
NCFs were summarized, and the TEM observations 
on the low frictional wear track indicated that the 
NCFs have the potential to achieve low friction 
coefficient at the early stage of cyclic friction. These 
findings help to understand the frictional behavior of 
nanostructured carbon films. 
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