Building Simulation: An International Journal

Article Title

Numerical study of the influences of different patterns of the building and green space on micro-scale outdoor thermal comfort and indoor natural ventilation


outdoor thermal environment, natural ventilation potential (NVP), patterns of the building and green space, numerical simulation


Citizens could enjoy a healthy and comfortable living environment if outdoor thermal comfort and sufficient natural ventilation are available in their dwellings. In this paper, numerical studies were performed with the Simulation Platform for Outdoor Thermal Environment (SPOTE) to investigate: (1) the thermal environment and pedestrian thermal comfort of the occupants in the open space with different patterns of the building and green space; (2) the wind pressures on the building facades and the natural ventilation rate of these buildings. The conclusions are summarized as follows: (1) it has been observed that the long facades of building and green space, which are parallel to the prevailing wind direction, can accelerate horizontal vortex airflow at the edges where such airflow could strengthen the convective exchange efficiency of hot air in low altitude and cold air in high altitude, and can obtain thermal comfort and sufficient natural ventilation at the pedestrian level; (2) after a series of simulations and comparisons, the configuration in which buildings are grouped in staggered layout with a centralized green space can provide better ventilation conditions and suitable air movement as a result of attenuated revised standard effective temperature (SET*). This configuration is regarded as the optimum pattern of the building and green space.


Tsinghua University Press