Building Simulation: An International Journal

Article Title

Comparative evaluation of measured and perceived indoor environmental conditions in naturally and mechanically ventilated office environments


indoor environment, occupant perception, thermal comfort, monitoring, occupant survey


This paper uses a case study-based approach to comparatively evaluate the relationship between measured and perceived indoor environmental conditions in two office buildings, one naturally ventilated and one mechanically ventilated, located in south England. Environmental parameters (indoor and outdoor temperature and relative humidity, and indoor CO2 concentration) were continuously monitored at 5-minute intervals over a 19-month period (March 2017 to September 2018). During this time, occupant satisfaction surveys (both transverse and longitudinal) recorded occupant perceptions of their working environment, including thermal comfort, resulting in approximately 5700 survey responses from the two case studies combined. In the NV office, CO2 levels were high (often >2000 ppm) and indoor temperature was both high (>27 °C) and variable (up to 8 °C change in a working day). In contrast, the MV office environment was found to operate within much narrower temperature, RH and CO2 bands. This was particularly evident in the little seasonal variation observed in the CO2 levels in the MV office (rarely above 1200 ppm); whereas in the NV office, CO2 concentrations exceeded 2000 ppm on 12% of working days during the heating seasons and less than 1% in the non-heating season. Despite these differences in measured indoor environmental conditions, occupants’ overall satisfaction with their environment was similar in both buildings. Occupants of the NV building were found to be more tolerant of higher indoor temperatures while neutral thermal sensation corresponded to a higher indoor temperature, indicating the role of adaptation. This has important implications for energy use in managing the indoor environment.


Tsinghua University Press