•  
  •  
 
Big Data Mining and Analytics

Keywords

data assimilation, deep learning, neural networks, Kalman filter, variational approach

Abstract

In this paper, we suggest a new methodology which combines Neural Networks (NN) into Data Assimilation (DA). Focusing on the structural model uncertainty, we propose a framework for integration NN with the physical models by DA algorithms, to improve both the assimilation process and the forecasting results. The NNs are iteratively trained as observational data is updated. The main DA models used here are the Kalman filter and the variational approaches. The effectiveness of the proposed algorithm is validated by examples and by a sensitivity study.

Publisher

Tsinghua University Press

Share

COinS